Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:0
|
作者
FAN XingYa [1 ]
HE JianXun [1 ]
LI BaoDe [2 ]
YANG DaChun [3 ]
机构
[1] School of Mathematics and Information Sciences, Guangzhou University
[2] College of Mathematics and System Science, Xinjiang University
[3] School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education
基金
中国国家自然科学基金;
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let A :=(A1, A2) be a pair of expansive dilations and φ : Rn×Rm×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space HφA(Rn× Rm) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the gλ*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of HφA(Rn× Rm) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from HφA(Rn× Rm) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from HφA(Rn× Rm) to Lφ(Rn× Rm)and from HφA(Rn×Rm) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on Rn× Rmand are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:62
相关论文
共 50 条
  • [31] ATOMIC CHARACTERIZATIONS OF WEAK MARTINGALE MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Xie, Guangheng
    Yang, Dachun
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04): : 884 - 917
  • [32] Real-variable characterizations of Orlicz-Hardy spaces on strongly Lipschitz domains of Rn
    Yang, Dachun
    Yang, Sibei
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (01) : 237 - 292
  • [33] MOLECULAR CHARACTERIZATION OF ANISOTROPIC WEAK MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Sun, Ruirui
    Li, Jinxia
    Li, Baode
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2377 - 2395
  • [34] A new molecular characterization of diagonal anisotropic Musielak-Orlicz Hardy spaces
    Liao, Minfeng
    Li, Jinxia
    Li, Bo
    Li, Baode
    BULLETIN DES SCIENCES MATHEMATIQUES, 2021, 166
  • [35] Weak Musielak-Orlicz Hardy spaces and applications
    Liang, Yiyu
    Yang, Dachun
    Jiang, Renjin
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (5-6) : 634 - 677
  • [36] Several remarks on Musielak-Orlicz Hardy spaces
    Bonami, Aline
    Ky, Luong Dang
    Liang, Yiyu
    Yang, Dachun
    BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 181
  • [37] LUSIN AREA FUNCTION AND MOLECULAR CHARACTERIZATIONS OF MUSIELAK-ORLICZ HARDY SPACES AND THEIR APPLICATIONS
    Hou, Shaoxiong
    Yang, Dachun
    Yang, Sibei
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (06)
  • [38] Littlewood-Paley Function and Molecular Characterizations of Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 71 - 107
  • [39] Martingale inequalities on Musielak-Orlicz Hardy spaces
    He, Lechen
    Peng, Lihua
    Xie, Guangheng
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (11) : 5171 - 5189
  • [40] REAL-VARIABLE CHARACTERIZATIONS OF NEW ANISOTROPIC MIXED-NORM HARDY SPACES
    Huang, Long
    Liu, Jun
    Yang, Dachun
    Yuan, Wen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (06) : 3033 - 3082