Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces

被引:0
|
作者
FAN XingYa [1 ]
HE JianXun [1 ]
LI BaoDe [2 ]
YANG DaChun [3 ]
机构
[1] School of Mathematics and Information Sciences, Guangzhou University
[2] College of Mathematics and System Science, Xinjiang University
[3] School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education
基金
中国国家自然科学基金;
关键词
anisotropic expansive dilation; product Hardy space; product Musielak-Orlicz function; product Muckenhoupt weight; Littlewood-Paley theory; atom; anisotropic product singular integral operator;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
Let A :=(A1, A2) be a pair of expansive dilations and φ : Rn×Rm×[0, ∞) → [0, ∞) an anisotropic product Musielak-Orlicz function. In this article, we introduce the anisotropic product Musielak-Orlicz Hardy space HφA(Rn× Rm) via the anisotropic Lusin-area function and establish its atomic characterization, the g-function characterization, the gλ*-function characterization and the discrete wavelet characterization via first giving out an anisotropic product Peetre inequality of Musielak-Orlicz type. Moreover, we prove that finite atomic decomposition norm on a dense subspace of HφA(Rn× Rm) is equivalent to the standard infinite atomic decomposition norm. As an application, we show that, for a given admissible triplet(φ, q, s), if T is a sublinear operator and maps all(φ, q, s)-atoms into uniformly bounded elements of some quasi-Banach spaces B, then T uniquely extends to a bounded sublinear operator from HφA(Rn× Rm) to B. Another application is that we obtain the boundedness of anisotropic product singular integral operators from HφA(Rn× Rm) to Lφ(Rn× Rm)and from HφA(Rn×Rm) to itself, whose kernels are adapted to the action of A. The results of this article essentially extend the existing results for weighted product Hardy spaces on Rn× Rmand are new even for classical product Orlicz-Hardy spaces.
引用
收藏
页码:2093 / 2154
页数:62
相关论文
共 50 条
  • [21] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Zhang, Hui
    Qi, Chunyan
    Li, Baode
    FRONTIERS OF MATHEMATICS IN CHINA, 2017, 12 (04) : 993 - 1022
  • [22] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [23] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [24] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [25] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [26] Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
    Hui Zhang
    Chunyan Qi
    Baode Li
    Frontiers of Mathematics in China, 2017, 12 : 993 - 1022
  • [27] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [28] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [29] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China(Mathematics), 2019, 62 (08) : 1567 - 1584
  • [30] INTRINSIC SQUARE FUNCTION CHARACTERIZATIONS OF WEAK MUSIELAK-ORLICZ HARDY SPACES
    Yan, Xianjie
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (04) : 969 - 988