Uniform perfectness of the attractor of bi-Lipschitz IFS

被引:0
|
作者
RUAN Huojun
机构
关键词
uniform perfectness; iterated function systems;
D O I
暂无
中图分类号
TP316 [操作系统];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we prove that the attractor of C1,a bi-Lipschitz IFS in R is uniformly perfect if it is not a singleton. Then we construct an example to show that this does not hold for C1 bi-Lipschitz IFS in Rn.
引用
收藏
页码:433 / 438
页数:6
相关论文
共 50 条
  • [31] A planar bi-Lipschitz extension theorem
    Daneri, Sara
    Pratelli, Aldo
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 221 - 266
  • [32] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [33] BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS
    Kovalev, Leonid V.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 110 - 118
  • [34] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [35] Bi-Lipschitz Characterization of Space Curves
    Alexandre Fernandes
    Zbigniew Jelonek
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54
  • [36] BI-LIPSCHITZ EMBEDDINGS OF QUASICONFORMAL TREES
    David, Guy c.
    Eriksson-bique, S. Y. L. V. E. S. T. E. R.
    Vellis, V. Y. R. O. N.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, : 2031 - 2044
  • [37] ON BI-LIPSCHITZ STABILITY OF FAMILIES OF FUNCTIONS
    Valette, Guillaume
    JOURNAL OF SINGULARITIES, 2012, 6 : 179 - 198
  • [38] Bi-Lipschitz pieces between manifolds
    David, Guy C.
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (01) : 175 - 218
  • [39] Invariants for bi-Lipschitz equivalence of ideals
    Bivia-Ausina, Carles
    Fukui, Toshizumi
    QUARTERLY JOURNAL OF MATHEMATICS, 2017, 68 (03): : 791 - 815
  • [40] SYMMETRIZATION AND EXTENSION OF PLANAR BI-LIPSCHITZ MAPS
    Kovalev, Leonid V.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2018, 43 (01) : 541 - 556