Wear Fault Diagnosis of Machinery Based on Neural Networks and Gray Relationships

被引:2
|
作者
CHEN Chang zheng
机构
关键词
wear particles identification; fault diagnosis; neural networks; gray relationship;
D O I
10.13434/j.cnki.1007-4546.2001.03.009
中图分类号
TP183 [人工神经网络与计算];
学科分类号
摘要
In this paper, the regular characteristic of wear particles related to fault type of machines based on condition monitoring of reciprocal machinery is discussed. The typical wear particles spectrum is established according to the equipment structure, friction and wear rule and the characteristic of wear particles; The identification technology of wear particles is proposed based on neural networks and a gray relationship; an intelligent wear particles identification system is designed. The diagnosis example shows that this system can promote the accuracy and the speed of wear particles identification.
引用
收藏
页码:164 / 169
页数:6
相关论文
共 50 条
  • [21] Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery
    Xu, Yadong
    Yan, Xiaoan
    Feng, Ke
    Sheng, Xin
    Sun, Beibei
    Liu, Zheng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2022, 226
  • [22] Rotating machinery fault diagnosis based on wavelet fuzzy neural network
    Peng, B
    Liu, ZQ
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS II, 2005, 187 : 527 - 534
  • [23] Fault diagnosis for machinery based on feature selection and probabilistic neural network
    Li H.
    Zhao J.
    Zhang X.
    Ni X.
    Li, Haiping (hp_li@hotmail.com), 1600, Totem Publishers Ltd (13): : 1165 - 1170
  • [24] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [25] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2022, 2022
  • [26] Research on Fault Diagnosis of Rotating Machinery Based on Quantum Neural Network
    Yun, Wang
    PROCEEDINGS OF 2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, ELECTRONICS AND ELECTRICAL ENGINEERING (AUTEEE), 2018, : 306 - 310
  • [27] Fault diagnosis of rotating machinery based on wavelet transforms and Neural Network
    Roztocil, Jan
    Novak, Martin
    2010 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS, 2010, : 293 - 298
  • [28] Study on Fault Diagnosis of Rotating Machinery Based on Wavelet Neural Network
    Xu Yangwen
    ITCS: 2009 INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE, PROCEEDINGS, VOL 2, PROCEEDINGS, 2009, : 221 - 224
  • [29] Fault diagnosis of rotating machinery based on gray primitive co-occurrence matrix
    Dou, Wei
    Liu, Zhan-Sheng
    Ma, Xiao-Feng
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2008, 23 (09): : 1609 - 1616
  • [30] Ensemble adaptive convolutional neural networks with parameter transfer for rotating machinery fault diagnosis
    Zhao, Ke
    Jiang, Hongkai
    Li, Xingqiu
    Wang, Ruixin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (05) : 1483 - 1499