Attention-based multiscale denoising residual convolutional neural networks for fault diagnosis of rotating machinery

被引:58
|
作者
Xu, Yadong [1 ]
Yan, Xiaoan [2 ]
Feng, Ke [3 ]
Sheng, Xin [4 ]
Sun, Beibei [1 ]
Liu, Zheng [3 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
[2] Nanjing Forestry Univ, Sch Mech Engn, Nanjing 210037, Peoples R China
[3] Univ British Columbia, Sch Engn, Kelowna, BC V1V 1V7, Canada
[4] Yangzhou Univ, Sch Mech Engn, Yangzhou 225127, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Vibration signals; Multiscale denoising module (MDM); Feature enhancement module (FEM); Joint attention module (JAM);
D O I
10.1016/j.ress.2022.108714
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CNN-based fault diagnosis approaches have achieved promising results in improving the safety and reliability of rotating machinery. Most of the existing CNN models are developed on the assumption that the collected data is high-quality. However, since rotating machinery usually operates under fluctuating conditions, the critical pulse information of the measured vibration signals is easily submerged in noise. To promote the adaptability of CNN in noisy industrial scenes, an attention-based multiscale denoising residual convolutional neural network (AM-DRCN) is put forward in this study. First of all, a multiscale denoising module (MDM) is introduced as the basic building unit to help the network explore multiscale features and filter out irrelevant information. Then, a feature enhancement module (FEM) is leveraged to expand the receptive field and make full use of the side-out features. Further, a joint attention module (JAM) is explored to integrate the extracted features effectively. Finally, a lightweight CNN model named AM-DRCN is developed based on the above improvements. The practicality and effectiveness of AM-DRCN for monitoring machine health and stability states are verified through three case studies.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Attention-based ConvNeXt with a parallel multiscale dilated convolution residual module for fault diagnosis of rotating machinery
    Guo, Baosu
    Qiao, Zhaohui
    Zhang, Ning
    Wang, Yongchun
    Wu, Fenghe
    Peng, Qingjin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [2] Fault Diagnosis for Rotating Machinery Using Multiscale Permutation Entropy and Convolutional Neural Networks
    Li, Hongmei
    Huang, Jinying
    Yang, Xiwang
    Luo, Jia
    Zhang, Lidong
    Pang, Yu
    ENTROPY, 2020, 22 (08)
  • [3] Multiscale Residual Attention Convolutional Neural Network for Bearing Fault Diagnosis
    Jia, Linshan
    Chow, Tommy W. S.
    Wang, Yu
    Yuan, Yixuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [4] Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks
    Xia, Min
    Li, Teng
    Xu, Lin
    Liu, Lizhi
    de Silva, Clarence W.
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2018, 23 (01) : 101 - 110
  • [5] Fault Diagnosis of Rotating Machinery Based on Evolutionary Convolutional Neural Network
    Bai, Yihao
    Cheng, Weidong
    Wen, Weigang
    Liu, Yang
    SHOCK AND VIBRATION, 2022, 2022
  • [6] Fault diagnosis of rotating machinery by neural networks
    Ligteringen, R
    Ypma, A
    Duin, RPW
    Frietman, EEE
    NEURAL NETWORKS: BEST PRACTICE IN EUROPE, 1997, 8 : 161 - 164
  • [7] Fault diagnosis of rotating machinery based on recurrent neural networks
    Zhang, Yahui
    Zhou, Taotao
    Huang, Xufeng
    Cao, Longchao
    Zhou, Qi
    MEASUREMENT, 2021, 171
  • [8] Fault diagnosis of rotating machinery based on DVMD denoising
    Yin X.-L.
    Mu Z.-L.
    Wang Y.-Q.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2022, 39 (07): : 1324 - 1334
  • [9] Multiscale wavelet packetinspired convolutional network for fault diagnosis of rotating machinery
    Lu, Yixiang
    Qian, Dongsheng
    Zhu, De
    Sun, Dong
    Zhao, Dawei
    Gao, Qingwei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (17): : 203 - 213
  • [10] Fault diagnosis algorithm of rotating machinery based on dynamic weighted multiscale residual network
    Shi H.
    Zheng C.
    Si J.
    Chen J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2022, 41 (23): : 67 - 74and93