The Cauchy problem for non-autonomous nonlinear Schrdinger equations

被引:0
|
作者
Peter Y. H. Pang
机构
[1] Department of Mathematics National University of Singapore
[2] Republic of Singapore
[3] 2 Science Drive 2
[4] Singapore 117543
关键词
non-autonomous Schrodinger equations; local existence; global existence;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this paper we study the Cauchy problem for cubic nonlinear Schrodinger equation with space- and time-dependent coefficients on Rm and Tm. By an approximation argument we prove that for suitable initial values, the Cauchy problem admits unique local solutions. Global existence is discussed in the cases of m = 1,2.
引用
收藏
页码:522 / 538
页数:17
相关论文
共 50 条
  • [31] CAUCHY PROBLEM FOR STOCHASTIC NON-AUTONOMOUS EVOLUTION EQUATIONS GOVERNED BY NONCOMPACT EVOLUTION FAMILIES
    Chen, Pengyu
    Li, Yongxiang
    Zhang, Xuping
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (03): : 1531 - 1547
  • [32] Ground state solutions of the non-autonomous Schrödinger–Bopp–Podolsky system
    Sitong Chen
    Lin Li
    Vicenţiu D. Rădulescu
    Xianhua Tang
    Analysis and Mathematical Physics, 2022, 12
  • [33] Non-autonomous exact solutions and dynamic behaviors for the variable coefficient nonlinear Schrödinger equation with external potential
    Qin, Qing
    Li, Li
    Yu, Fajun
    PHYSICA SCRIPTA, 2025, 100 (01)
  • [34] The Cauchy problem for the energy-critical inhomogeneous nonlinear Schrödinger equation
    Yoonjung Lee
    Ihyeok Seo
    Archiv der Mathematik, 2021, 117 : 441 - 453
  • [35] The Cauchy Problem for Coupled Nonlinear Schrdinger Equations with Linear Damping: Local and Global Existence and Blowup of Solutions
    Joo-Paulo DIAS
    Mrio FIGUEIRA
    Vladimir V.KONOTOP
    Chinese Annals of Mathematics,Series B, 2016, (05) : 665 - 682
  • [36] The cauchy problem for coupled nonlinear Schrödinger equations with linear damping: Local and global existence and blowup of solutions
    João-Paulo Dias
    Mário Figueira
    Vladimir V. Konotop
    Chinese Annals of Mathematics, Series B, 2016, 37 : 665 - 682
  • [37] Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1, 2)
    Iqbal, Naveed
    Niazi, Azmat Ullah Khan
    Khan, Ikram Ullah
    Shah, Rasool
    Botmart, Thongchai
    AIMS MATHEMATICS, 2022, 7 (05): : 8891 - 8913
  • [38] Cauchy Problem for Stochastic Nonlinear Schrödinger Equation with Nonlinear Energy-Critical Damping
    Miao, Lijun
    Qiu, Linlin
    MATHEMATICS, 2024, 12 (16)
  • [39] Uniform attractors for non-autonomous Klein-Gordon-Schrdinger lattice systems
    黄锦舞
    韩晓莹
    周盛凡
    AppliedMathematicsandMechanics(EnglishEdition), 2009, 30 (12) : 1597 - 1607
  • [40] Uniform attractors for non-autonomous Klein-Gordon-Schrödinger lattice systems
    Jin-wu Huang
    Xiao-ying Han
    Sheng-fan Zhou
    Applied Mathematics and Mechanics, 2009, 30 : 1597 - 1607