On product affine hyperspheres in Rn+1

被引:3
|
作者
Xiuxiu Cheng [1 ,2 ]
Zejun Hu [1 ,2 ]
Marilena Moruz [3 ]
Luc Vrancken [3 ,4 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Henan Key Laboratory of Financial Engineering
[3] Department of Mathematics,KU Leuven
[4] Institut des Sciences et Techniques de Valenciennes (ISTV),Université Polytechnique Hauts de France
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study locally strongly convex affine hyperspheres in the unimodular affine space Rn+1which, as Riemannian manifolds, are locally isometric to the Riemannian product of two Riemannian manifolds both possessing constant sectional curvature. As the main result, a complete classification of such affine hyperspheres is established. Moreover, as direct consequences, 3-and 4-dimensional affine hyperspheres with parallel Ricci tensor are also classified.
引用
收藏
页码:2055 / 2078
页数:24
相关论文
共 50 条
  • [1] On product affine hyperspheres in Double-struck capital Rn+1
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 2055 - 2078
  • [2] ON THE CONSTRUCTION OF NONEQUATORIAL MINIMAL HYPERSPHERES IN SN(1) WITH STABLE CONES IN RN+1
    HSIANG, WY
    STERLING, I
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1984, 81 (24): : 8035 - 8036
  • [3] On product affine hyperspheres in ℝn+1
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    Science China Mathematics, 2020, 63 : 2055 - 2078
  • [4] Characterizations of the Calabi product of hyperbolic affine hyperspheres
    Hu, Zejun
    Li, Haizhong
    Vrancken, Luc
    RESULTS IN MATHEMATICS, 2008, 52 (3-4) : 299 - 314
  • [5] Characterizations of the Calabi Product of Hyperbolic Affine Hyperspheres
    Zejun Hu
    Haizhong Li
    Luc Vrancken
    Results in Mathematics, 2008, 52 : 299 - 314
  • [6] AN n-CELL IN Rn+1 THAT IS NOT THE ATTRACTOR OF ANY IFS ON Rn+1
    Sanders, Manuel J.
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2009, 21 (01) : 13 - 20
  • [7] A MAXIMUM PRINCIPLE IN RN+1
    RASSIAS, JMS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 85 (01) : 106 - 113
  • [8] On Hypersurfaces in Rn+1 with Bounds on Curvature
    Delladio, Silvano
    JOURNAL OF GEOMETRIC ANALYSIS, 2001, 11 (01) : 17 - 42
  • [9] CANONICAL EQUIAFFINE HYPERSURFACES IN RN+1
    WANG, CP
    MATHEMATISCHE ZEITSCHRIFT, 1993, 214 (04) : 579 - 592
  • [10] HYPERBOLIC AFFINE HYPERSPHERES
    SASAKI, T
    NAGOYA MATHEMATICAL JOURNAL, 1980, 77 (FEB) : 107 - 123