ON THE CONSTRUCTION OF NONEQUATORIAL MINIMAL HYPERSPHERES IN SN(1) WITH STABLE CONES IN RN+1

被引:5
|
作者
HSIANG, WY
STERLING, I
机构
关键词
D O I
10.1073/pnas.81.24.8035
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:8035 / 8036
页数:2
相关论文
共 50 条
  • [1] On product affine hyperspheres in Rn+1
    Xiuxiu Cheng
    Zejun Hu
    Marilena Moruz
    Luc Vrancken
    ScienceChina(Mathematics), 2020, 63 (10) : 2055 - 2078
  • [2] Stability of r-minimal cones in Rn+1
    Barros, A.
    Sousa, P.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1407 - 1416
  • [3] On stable complete minimal hypersurfaces in Rn+1
    Shen, YB
    Zhu, XH
    AMERICAN JOURNAL OF MATHEMATICS, 1998, 120 (01) : 103 - 116
  • [4] The structure of δ-stable minimal hypersurfaces in Rn+1
    Fu, Hai-Ping
    HOKKAIDO MATHEMATICAL JOURNAL, 2011, 40 (01) : 103 - 110
  • [5] The structure of stable minimal hypersurfaces in Rn+1
    Cao, HD
    Shen, Y
    Zhu, SH
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (05) : 637 - 644
  • [6] On product affine hyperspheres in Double-struck capital Rn+1
    Cheng, Xiuxiu
    Hu, Zejun
    Moruz, Marilena
    Vrancken, Luc
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (10) : 2055 - 2078
  • [7] On stability of cones in Rn+1 with zero scalar curvature
    Barbosa, JLM
    Do Carmo, MP
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2005, 28 (02) : 107 - 122
  • [8] On Stability of Cones in Rn+1 with Zero Scalar Curvature
    J. L. M. Barbosa
    M. P. Do Carmo
    Annals of Global Analysis and Geometry, 2005, 28 : 107 - 122
  • [9] Gap theorems for minimal submanifolds in Rn+1
    Ni, L
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (03) : 641 - 656
  • [10] Duality for a class of minimal surfaces in Rn+1
    Small, A
    TOHOKU MATHEMATICAL JOURNAL, 1999, 51 (04) : 585 - 601