On product affine hyperspheres in Rn+1

被引:3
|
作者
Xiuxiu Cheng [1 ,2 ]
Zejun Hu [1 ,2 ]
Marilena Moruz [3 ]
Luc Vrancken [3 ,4 ]
机构
[1] School of Mathematics and Statistics, Zhengzhou University
[2] Henan Key Laboratory of Financial Engineering
[3] Department of Mathematics,KU Leuven
[4] Institut des Sciences et Techniques de Valenciennes (ISTV),Université Polytechnique Hauts de France
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O186.1 [微分几何];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study locally strongly convex affine hyperspheres in the unimodular affine space Rn+1which, as Riemannian manifolds, are locally isometric to the Riemannian product of two Riemannian manifolds both possessing constant sectional curvature. As the main result, a complete classification of such affine hyperspheres is established. Moreover, as direct consequences, 3-and 4-dimensional affine hyperspheres with parallel Ricci tensor are also classified.
引用
收藏
页码:2055 / 2078
页数:24
相关论文
共 50 条
  • [41] A note on compact Weingarten hypersurfaces embedded in Rn+1
    de Lima, Eudes L.
    ARCHIV DER MATHEMATIK, 2018, 111 (06) : 669 - 672
  • [42] MINIMAL GRAPHS IN Hn x R AND Rn+1
    Earp, Ricardo Sa
    Toubiana, Eric
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (07) : 2373 - 2402
  • [43] STABILITY PROPERTIES FOR THE HIGHER DIMENSIONAL CATENOID IN Rn+1
    Tam, Luen-Fai
    Zhou, Detang
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3451 - 3461
  • [44] Willmore hypersurfaces with constant Mobius curvature in Rn+1
    Li, Tongzhu
    Ma, Xiang
    Wang, Changping
    GEOMETRIAE DEDICATA, 2013, 166 (01) : 251 - 267
  • [45] A CLASS OF INVERSE CURVATURE FLOWS IN Rn+1, II
    Hu, Jin-Hua
    Mao, Jing
    Tu, Qiang
    Wu, Di
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (05) : 1299 - 1322
  • [46] SYMMETRY AND UNIQUENESS OF EMBEDDED MINIMAL HYPERSURFACES IN Rn+1
    Park, Sung-Ho
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (01) : 21 - 30
  • [47] Lorentzian affine hyperspheres with constant affine sectional curvature
    Kriele, M
    Vrancken, L
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (04) : 1581 - 1599
  • [48] THE FOURIER-TRANSFORMS OF SMOOTH MEASURES ON HYPERSURFACES OF RN+1
    MARSHALL, B
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1986, 38 (02): : 328 - 359
  • [49] Symmetry of solutions to a class of geometric equations for hypersurfaces in Rn+1
    Chen, Shibing
    Li, Qi-Rui
    Xu, Liang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 401 : 671 - 682
  • [50] An obstruction for the mean curvature of a conformal immersion Sn→Rn+1
    Ammann, Bernd
    Humbert, Emmanuel
    Ahmedou, Mohameden Ould
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (02) : 489 - 493