Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
被引:0
|
作者:
冯民富
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,Sichuan UniversityDepartment of Mathematics,Sichuan University
冯民富
[1
]
祁瑞生
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,Sichuan UniversityDepartment of Mathematics,Sichuan University
祁瑞生
[1
]
朱瑞
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics,Sichuan UniversityDepartment of Mathematics,Sichuan University
朱瑞
[1
]
鞠炳焘
论文数: 0引用数: 0
h-index: 0
机构:
Department of Information Technology,CNOOC Energy Technology and Services Limited Beijing Branch CompanyDepartment of Mathematics,Sichuan University
鞠炳焘
[2
]
机构:
[1] Department of Mathematics,Sichuan University
[2] Department of Information Technology,CNOOC Energy Technology and Services Limited Beijing Branch Company
Beavers-Joseph-Saffman condition;
mass conservation;
balance of force;
coupled Stokes and Darcy problem;
D O I:
暂无
中图分类号:
O241.82 [偏微分方程的数值解法];
学科分类号:
摘要:
This paper introduces a new stabilized finite element method for the coupled Stokes and Darcy problem based on the nonconforming Crouzeix-Raviart element.Optimal error estimates for the fluid velocity and pressure are derived.A numerical example is presented to verify the theoretical predictions.
机构:
Hitotsubashi Univ, Grad Sch Commerce & Management, Kunitachi, Tokyo, JapanHitotsubashi Univ, Grad Sch Commerce & Management, Kunitachi, Tokyo, Japan
Kobayashi, Kenta
Tsuchiya, Takuya
论文数: 0引用数: 0
h-index: 0
机构:
Ehime Univ, Grad Sch Sci & Engn, Matsuyama, Ehime, JapanHitotsubashi Univ, Grad Sch Commerce & Management, Kunitachi, Tokyo, Japan