Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem

被引:0
|
作者
冯民富 [1 ]
祁瑞生 [1 ]
朱瑞 [1 ]
鞠炳焘 [2 ]
机构
[1] Department of Mathematics,Sichuan University
[2] Department of Information Technology,CNOOC Energy Technology and Services Limited Beijing Branch Company
关键词
Beavers-Joseph-Saffman condition; mass conservation; balance of force; coupled Stokes and Darcy problem;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
This paper introduces a new stabilized finite element method for the coupled Stokes and Darcy problem based on the nonconforming Crouzeix-Raviart element.Optimal error estimates for the fluid velocity and pressure are derived.A numerical example is presented to verify the theoretical predictions.
引用
收藏
页码:393 / 404
页数:12
相关论文
共 50 条
  • [31] A general quadratic enrichment of the Crouzeix-Raviart finite element
    Nudo, Federico
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [32] AN IMMERSED CROUZEIX-RAVIART FINITE ELEMENT METHOD FOR NAVIER-STOKES EQUATIONS WITH MOVING INTERFACES
    Wang, Jin
    Zhang, Xu
    Zhuang, Qiao
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2022, 19 (04) : 563 - 586
  • [33] Supercloseness and Asymptotic Analysis of the Crouzeix–Raviart and Enriched Crouzeix–Raviart Elements for the Stokes Problem
    Wei Chen
    Hao Han
    Limin Ma
    Journal of Scientific Computing, 2025, 103 (2)
  • [34] Crouzeix-Raviart boundary elements
    Heuer, Norbert
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 381 - 401
  • [35] A 3D Crouzeix-Raviart mortar finite element
    Leszek Marcinkowski
    Talal Rahman
    Jan Valdman
    Computing, 2009, 86 : 313 - 330
  • [36] Orthogonality relations of Crouzeix-Raviart and Raviart-Thomas finite element spaces
    Bartels, Soren
    Wang, Zhangxian
    NUMERISCHE MATHEMATIK, 2021, 148 (01) : 127 - 139
  • [37] Error analysis of Crouzeix-Raviart and Raviart-Thomas finite element methods
    Kobayashi, Kenta
    Tsuchiya, Takuya
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2018, 35 (03) : 1191 - 1211
  • [38] On an additive Schwarz preconditioner for the Crouzeix-Raviart mortar finite element
    Rahman, T
    Xu, XJ
    Hoppe, RHW
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 335 - 342
  • [39] A 3D Crouzeix-Raviart mortar finite element
    Marcinkowski, Leszek
    Rahman, Talal
    Valdman, Jan
    COMPUTING, 2009, 86 (04) : 313 - 330
  • [40] Viscosity-independent reliability and efficiency constants for Brinkman equations with stabilized Crouzeix-Raviart element
    Li, Jingshi
    Zhang, Jiachuan
    Zhang, Ran
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 460