Supercloseness and Asymptotic Analysis of the Crouzeix–Raviart and Enriched Crouzeix–Raviart Elements for the Stokes Problem

被引:0
|
作者
Wei Chen [1 ]
Hao Han [2 ]
Limin Ma [2 ]
机构
[1] Peking University,LMAM and School of Mathematical Sciences
[2] Peking University,Chongqing Research Institute of Big Data
[3] Wuhan University of Technology,School of Mathematics and Statistics
[4] Peking University,National Engineering Laboratory for Big Data Analysis and Applications
[5] Wuhan University,School of Mathematics and Statistics
[6] National Center for Applied Mathematics in Hubei,undefined
关键词
Supercloseness; Nonconforming finite element; Stokes equation; Eigenvalue problem; 65N30;
D O I
10.1007/s10915-025-02888-z
中图分类号
学科分类号
摘要
For the Crouzeix–Raviart and enriched Crouzeix–Raviart elements of the Stokes problem, two pseudostress interpolations are designed and proved to admit a full one-order supercloseness with respect to the numerical velocity and the pressure, respectively. The design of these interpolations overcomes the difficulty caused by the lack of supercloseness of the canonical interpolations for the two nonconforming elements, and leads to an intrinsic and concise asymptotic analysis of numerical eigenvalues for the Stokes operator, which proves an optimal superconvergence of eigenvalues by the extrapolation algorithm. Meanwhile, an optimal superconvergence of postprocessed approximations for the Stokes equation is proved by use of this supercloseness. Finally, numerical experiments are tested to verify the theoretical results.
引用
收藏
相关论文
共 50 条
  • [1] ASYMPTOTIC EXPANSIONS OF EIGENVALUES BY BOTH THE CROUZEIX-RAVIART AND ENRICHED CROUZEIX-RAVIART ELEMENTS
    Hu, Jun
    Ma, Limin
    MATHEMATICS OF COMPUTATION, 2022, 91 (333) : 75 - 109
  • [2] The Enriched Crouzeix–Raviart Elements are Equivalent to the Raviart–Thomas Elements
    Jun Hu
    Rui Ma
    Journal of Scientific Computing, 2015, 63 : 410 - 425
  • [3] The Enriched Crouzeix-Raviart Elements are Equivalent to the Raviart-Thomas Elements
    Hu, Jun
    Ma, Rui
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 63 (02) : 410 - 425
  • [4] Crouzeix–Raviart boundary elements
    Norbert Heuer
    Francisco-Javier Sayas
    Numerische Mathematik, 2009, 112 : 381 - 401
  • [5] Crouzeix-Raviart boundary elements
    Heuer, Norbert
    Sayas, Francisco-Javier
    NUMERISCHE MATHEMATIK, 2009, 112 (03) : 381 - 401
  • [6] ASYMPTOTICALLY EXACT A POSTERIORI ERROR ESTIMATES OF EIGENVALUES BY THE CROUZEIX-RAVIART ELEMENT AND ENRICHED CROUZEIX-RAVIART ELEMENT
    Hu, Jun
    Ma, Limin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (02): : A797 - A821
  • [7] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Feng, Min-fu
    Qi, Rui-sheng
    Zhu, Rui
    Ju, Bing-tao
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (03) : 393 - 404
  • [8] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    Min-fu Feng
    Rui-sheng Qi
    Rui Zhu
    Bing-tao Ju
    Applied Mathematics and Mechanics, 2010, 31 : 393 - 404
  • [9] Stabilized Crouzeix-Raviart element for the coupled Stokes and Darcy problem
    冯民富
    祁瑞生
    朱瑞
    鞠炳焘
    AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (03) : 393 - 404
  • [10] Stabilized Crouzeix-Raviart element for the Darcy-Stokes problem
    Burman, E
    Hansbo, P
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2005, 21 (05) : 986 - 997