Self-Supervised Monocular Depth Estimation via Discrete Strategy and Uncertainty

被引:0
|
作者
Zhenyu Li [1 ,2 ]
Junjun Jiang [1 ,2 ]
Xianming Liu [1 ,2 ]
机构
[1] the School of Computer Science and Technology,Harbin Institute of Technology
[2] Peng Cheng Laboratory
基金
中国国家自然科学基金; 中央高校基本科研业务费专项资金资助;
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Dear Editor, This letter is concerned with self-supervised monocular depth estimation. To estimate uncertainty simultaneously, we propose a simple yet effective strategy to learn the uncertainty for selfsupervised monocular depth estimation with the discrete strategy that explicitly associates the prediction and the uncertainty to train the networks. Furthermore, we propose the uncertainty-guided feature fusion module to fully utilize the uncertainty information.
引用
收藏
页码:1307 / 1310
页数:4
相关论文
共 50 条
  • [21] Self-supervised monocular depth estimation with direct methods
    Wang, Haixia
    Sun, Yehao
    Wu, Q. M. Jonathan
    Lu, Xiao
    Wang, Xiuling
    Zhang, Zhiguo
    NEUROCOMPUTING, 2021, 421 : 340 - 348
  • [22] Self-supervised monocular depth estimation with direct methods
    Wang H.
    Sun Y.
    Wu Q.M.J.
    Lu X.
    Wang X.
    Zhang Z.
    Neurocomputing, 2021, 421 : 340 - 348
  • [23] Adaptive Self-supervised Depth Estimation in Monocular Videos
    Mendoza, Julio
    Pedrini, Helio
    IMAGE AND GRAPHICS (ICIG 2021), PT III, 2021, 12890 : 687 - 699
  • [24] Self-Supervised Monocular Depth Estimation With Extensive Pretraining
    Choi, Hyukdoo
    IEEE ACCESS, 2021, 9 : 157236 - 157246
  • [25] Self-Supervised Monocular Depth Estimation with Extensive Pretraining
    Choi, Hyukdoo
    IEEE Access, 2021, 9 : 157236 - 157246
  • [26] Enhancing Self-supervised Monocular Depth Estimation via Incorporating Robust Constraints
    Li, Rui
    He, Xiantuo
    Zhu, Yu
    Li, Xianjun
    Sun, Jinqiu
    Zhang, Yanning
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3108 - 3117
  • [27] Self-Supervised Monocular Depth Estimation via Binocular Geometric Correlation Learning
    Peng, Bo
    Sun, Lin
    Lei, Jianjun
    Liu, Bingzheng
    Shen, Haifeng
    Li, Wanqing
    Huang, Qingming
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (08)
  • [28] Self-supervised monocular image depth learning and confidence estimation
    Chen, Long
    Tang, Wen
    Wan, Tao Ruan
    John, Nigel W.
    NEUROCOMPUTING, 2020, 381 : 272 - 281
  • [29] Self-supervised Learning for Dense Depth Estimation in Monocular Endoscopy
    Liu, Xingtong
    Sinha, Ayushi
    Unberath, Mathias
    Ishii, Masaru
    Hager, Gregory D.
    Taylor, Russell H.
    Reiter, Austin
    OR 2.0 CONTEXT-AWARE OPERATING THEATERS, COMPUTER ASSISTED ROBOTIC ENDOSCOPY, CLINICAL IMAGE-BASED PROCEDURES, AND SKIN IMAGE ANALYSIS, OR 2.0 2018, 2018, 11041 : 128 - 138
  • [30] Frequency-Aware Self-Supervised Monocular Depth Estimation
    Chen, Xingyu
    Li, Thomas H.
    Zhang, Ruonan
    Li, Ge
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5797 - 5806