Some Notes on Submanifolds of an Euclidean Space with Conformal Gauss Map

被引:0
|
作者
机构
关键词
Euclidean; coordinates; manifold; Notes; Riemannian; rectangular; immersion; tangent; curvature; symmetric;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) be an m-dimensional Riemannian manifold and i:M→Ean isometricimmersion of (M,g) into an n-dimensional Euclidean space E. Let VM be anopen set in which the immersion i:M→Eis given by x=x(y), (h=1,…,n; α=1,…,m). Here and in the sequel x(h=1,…,n) are rectangular coordinates of Eand y(α=1,…,m) are local coordinates of a generic point in V. The tangent planeiM=i(M), P∈V, of iM can be considered after a suitable parallel displacementas a point Γ(P) of the Grassmann manifold G(m,n-m).The mapping Γ:iM→G(m,n-m), ipΓ(iP) =Γ(P) is called the Gauss map. The mapping Γ:M→G(m,n-m),p(P) is called the Gauss map associated with the immersion i, and(M)=F(iM) the Gauss image of M.
引用
收藏
页码:93 / 95
页数:3
相关论文
共 50 条