Some Notes on Submanifolds of an Euclidean Space with Conformal Gauss Map

被引:0
|
作者
机构
关键词
Euclidean; coordinates; manifold; Notes; Riemannian; rectangular; immersion; tangent; curvature; symmetric;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) be an m-dimensional Riemannian manifold and i:M→Ean isometricimmersion of (M,g) into an n-dimensional Euclidean space E. Let VM be anopen set in which the immersion i:M→Eis given by x=x(y), (h=1,…,n; α=1,…,m). Here and in the sequel x(h=1,…,n) are rectangular coordinates of Eand y(α=1,…,m) are local coordinates of a generic point in V. The tangent planeiM=i(M), P∈V, of iM can be considered after a suitable parallel displacementas a point Γ(P) of the Grassmann manifold G(m,n-m).The mapping Γ:iM→G(m,n-m), ipΓ(iP) =Γ(P) is called the Gauss map. The mapping Γ:M→G(m,n-m),p(P) is called the Gauss map associated with the immersion i, and(M)=F(iM) the Gauss image of M.
引用
收藏
页码:93 / 95
页数:3
相关论文
共 50 条
  • [21] Spherical submanifolds in a Euclidean space
    Haila Alodan
    Sharief Deshmukh
    Monatshefte für Mathematik, 2007, 152 : 1 - 11
  • [22] Spherical submanifolds of a Euclidean space
    Al-Odan, H
    Deshmukh, S
    QUARTERLY JOURNAL OF MATHEMATICS, 2002, 53 : 249 - 256
  • [23] BOUR'S THEOREM ON THE GAUSS MAP IN 3-EUCLIDEAN SPACE
    Guler, Erhan
    Yayli, Yusuf
    Hacisalihoglu, H. Hilmi
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2010, 39 (04): : 515 - 525
  • [24] Spherical submanifolds in a Euclidean space
    Alodan, Haila
    Deshmukh, Sharief
    MONATSHEFTE FUR MATHEMATIK, 2007, 152 (01): : 1 - 11
  • [25] On the volume and Gauss map image of spacelike submanifolds in de Sitter space form
    Ye, WB
    JOURNAL OF GEOMETRY AND PHYSICS, 2005, 53 (03) : 336 - 344
  • [26] THE EUCLIDEAN ALGORITHM AND THE DEGREE OF THE GAUSS MAP
    SAKKALIS, T
    SIAM JOURNAL ON COMPUTING, 1990, 19 (03) : 538 - 543
  • [27] ON SOME CLASSES OF SUBMANIFOLDS SATISFYING CHEN'S EQUALITY IN AN EUCLIDEAN SPACE
    Ozgur, Cihan
    Chand, De Uday
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2011, (28): : 109 - 116
  • [28] Minimal Ruled Submanifolds Associated with Gauss Map
    Jung, Sun Mi
    Kim, Dong-Soo
    Kim, Young Ho
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (03): : 567 - 605
  • [29] Submanifolds with homothetic Gauss map in codimension two
    Guilherme Machado de Freitas
    Geometriae Dedicata, 2016, 180 : 151 - 170
  • [30] ON GAUSS MAP OF SUBMANIFOLDS IN A PSEUDO-SPHERE
    沈一兵
    A Monthly Journal of Science, 1982, (10) : 1129 - 1129