Some Notes on Submanifolds of an Euclidean Space with Conformal Gauss Map

被引:0
|
作者
机构
关键词
Euclidean; coordinates; manifold; Notes; Riemannian; rectangular; immersion; tangent; curvature; symmetric;
D O I
暂无
中图分类号
学科分类号
摘要
Let (M,g) be an m-dimensional Riemannian manifold and i:M→Ean isometricimmersion of (M,g) into an n-dimensional Euclidean space E. Let VM be anopen set in which the immersion i:M→Eis given by x=x(y), (h=1,…,n; α=1,…,m). Here and in the sequel x(h=1,…,n) are rectangular coordinates of Eand y(α=1,…,m) are local coordinates of a generic point in V. The tangent planeiM=i(M), P∈V, of iM can be considered after a suitable parallel displacementas a point Γ(P) of the Grassmann manifold G(m,n-m).The mapping Γ:iM→G(m,n-m), ipΓ(iP) =Γ(P) is called the Gauss map. The mapping Γ:M→G(m,n-m),p(P) is called the Gauss map associated with the immersion i, and(M)=F(iM) the Gauss image of M.
引用
收藏
页码:93 / 95
页数:3
相关论文
共 50 条
  • [1] SOME CLASSIFICATIONS OF RULED SUBMANIFOLDS IN MINKOWSKI SPACE AND THEIR GAUSS MAP
    Kiml, Dong-Soo
    Kim, Young Ho
    Jung, Sun Mi
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (04): : 1021 - 1040
  • [2] On the Affine Gauss Maps of Submanifolds of Euclidean Space
    Henri Anciaux
    Pierre Bayard
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 137 - 165
  • [3] On the Affine Gauss Maps of Submanifolds of Euclidean Space
    Anciaux, Henri
    Bayard, Pierre
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (01): : 137 - 165
  • [4] Conformal vector fields on submanifolds of a Euclidean space
    Alohali, Hanan
    Alodan, Haila
    Deshmukh, Sharief
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2017, 91 (1-2): : 217 - 233
  • [5] Harmonic Gauss maps of submanifolds of arbitrary codimension of the Euclidean space and sphere and some applications
    Bustos, Daniel
    Ripoll, Jaime
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (05) : 1737 - 1761
  • [6] Conformal Kaehler Euclidean submanifolds
    de Carvalho, A.
    Chion, S.
    Dajczer, M.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2022, 82
  • [8] Gauss Map and Its Applications on Ruled Submanifolds in Minkowski Space
    Jung, Sun Mi
    Kim, Young Ho
    SYMMETRY-BASEL, 2018, 10 (06):
  • [9] SUBMANIFOLDS WITH BIHARMONIC GAUSS MAP
    Balmus, A.
    Oniciuc, C.
    Montaldo, S.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2010, 21 (12) : 1585 - 1603
  • [10] Submanifolds of some Hartogs domain and the complex Euclidean space
    Zhang, Xu
    Ji, Donghai
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2023, 68 (11) : 1899 - 1905