Synthesis and Properties of Li2MnSiO4/C Cathode Materials for Li-ion Batteries

被引:1
|
作者
王燕超 [1 ,2 ]
赵世玺 [1 ]
机构
[1] Graduate School at Shenzhen, Tsinghua University
[2] School of Materials Science and Engineering, Tsinghua University
基金
中国国家自然科学基金;
关键词
Li-ion batteries; cathode; Li2MnSiO4; carbon coating;
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
Carbon was coated on the surface of LiMnSiOto improve the electrochemical performance as cathode materials, which were synthesized by the solution method followed by heat treatment at 700 ℃ and the solid-state method followed by heat treatment at 950 ℃. It is shown that the cycling performance is greatly enhanced by carbon coating, compared with the pristine LiMnSiOcathode obtained by the solution method. The initial discharge capacity of LiMnSiO/C nanocomposite is 280.9 m Ah/g at 0.05 C with the carbon content of 33.3 wt%. The reasons for the improved electrochemical performance are smaller grain size and higher electronic conductivity due to the carbon coating. The LiMnSiO/C cathode material obtained by the solid-state method exhibits poor cycling performance, the initial discharge capacity is less than 25 m Ah/g.
引用
收藏
页码:945 / 949
页数:5
相关论文
共 50 条
  • [31] Vanadium Substitution in Li2MnSiO4/C as Positive Electrode for Li Ion Batteries
    Wagner, Nils P.
    Vullum, Per Erik
    Nord, Magnus Kristofer
    Svensson, Ann Mari
    Vullum-Bruer, Fride
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (21): : 11359 - 11371
  • [32] In Situ Carbon Coated Li2MnSiO4/C Composites as Cathodes for Enhanced Performance Li-Ion Batteries
    Bhaskar, Akkisetty
    Deepa, Melepurath
    Rao, T. N.
    Varadaraju, U. V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) : A1954 - A1960
  • [33] The high capacity and excellent rate capability of Ti-doped Li2MnSiO4 as a cathode material for Li-ion batteries
    Wang, Min
    Yang, Meng
    Ma, Liqun
    Shen, Xiaodong
    RSC ADVANCES, 2015, 5 (02) : 1612 - 1618
  • [34] Direct synthesis of novel homogeneous nanocomposites of Li2MnSiO4 and carbon as a potential Li-ion battery cathode material
    Aono, Shintaro
    Tsurudo, Taisuke
    Urita, Koki
    Moriguchi, Isamu
    CHEMICAL COMMUNICATIONS, 2013, 49 (28) : 2939 - 2941
  • [35] Recent progress in the development of Li2MnSiO4 cathode materials
    Gummow, R. J.
    He, Y.
    JOURNAL OF POWER SOURCES, 2014, 253 : 315 - 331
  • [36] Template-Assisted Hydrothermal Synthesis of Li2MnSiO4 as a Cathode Material for Lithium Ion Batteries
    Xie, Man
    Luo, Rui
    Chen, Renjie
    Wu, Feng
    Zhao, Taolin
    Wang, Qiuyan
    Li, Li
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (20) : 10779 - 10784
  • [37] Li2MnSiO4@C nanocomposite as a high-capacity cathode material for Li-ion batteries
    Hu, Zhe
    Zhang, Kai
    Gao, Haiyan
    Duan, Wenchao
    Cheng, Fangyi
    Liang, Jing
    Chen, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (40) : 12650 - 12656
  • [38] Synthesis, characterization, and electrochemical performance of V-doped Li2MnSiO4/C composites for Li-ion battery
    Hwang, Chahwan
    Kim, Taejin
    Noh, Yohan
    Cha, Wansik
    Shim, Joongpyo
    Kwak, Kyungwon
    Ok, Kang Mm
    Lee, Kyung-Koo
    MATERIALS LETTERS, 2016, 164 : 270 - 273
  • [39] Comparative Study of the Cathode and Anode Performance of Li2MnSiO4 for Lithium-Ion Batteries
    Liu, Shuang-Shuang
    Song, Li-Jun
    Yu, Bao-Jun
    Wang, Cheng-Yang
    Li, Ming-Wei
    ELECTROCHIMICA ACTA, 2016, 188 : 145 - 152
  • [40] Hydrothermal Synthesis of Li2MnSiO4 Powders as a Cathode Material for Lithium Ion Cells
    Luo, Shaohua
    Wang, Ming
    Zhu, Xu
    Geng, Guihong
    HIGH-PERFORMANCE CERAMICS VII, PTS 1 AND 2, 2012, 512-515 : 1588 - +