Hydrothermal Synthesis of Li2MnSiO4 Powders as a Cathode Material for Lithium Ion Cells

被引:3
|
作者
Luo, Shaohua [1 ]
Wang, Ming [1 ,2 ]
Zhu, Xu [3 ]
Geng, Guihong [4 ]
机构
[1] Northeastern Univ, Qinhuangdao Branch, Dept Mat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Ceram, Shanghai 200050, Peoples R China
[3] Northeast Univ, Shenyang 110004, Peoples R China
[4] Beifang Univ Nationalities, Sch Mat Sci & Engn, Yinchuan 750021, Peoples R China
来源
基金
美国国家科学基金会;
关键词
Cathode material; Li2MnSiO4; hydrothermal synthesis; ELECTROCHEMICAL PROPERTIES; LI2FESIO4;
D O I
10.4028/www.scientific.net/KEM.512-515.1588
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Li2MnSiO4 cathode materials were prepared by hydrothermal reaction at 150 degrees C using LiOH, Si(OC2H5)(4) and Mn(Ac)(2)center dot 4H(2)O as raw materials followed by a low temperature heat annealing at 650 degrees C. The samples were characterized by XRD, SEM and FTIR. The powders electrochemical performance was investigated in terms of cycling behavior. Nanometer-sized flake crystalline particles of Li2MnSiO4 are obtained with some degree of agglomeration and little impure phases are detected after annealing. The charge capacity of the Li2MnSiO4 samples is 306 mAh/g (about 1.84 Li+ per unit formula extracted), and the discharge capacity is 114 mAh/g (about 0.68 Li+ per unit formula inserted) in the first cycle in the voltage range of 1.5 similar to 4.8 V under a rate of C/20. With increasing cycle number, the cell exhibits a well cycle performance with more than 95% coulombic efficiency and the maintenance of 61% of its discharge capacity after 50 cycles.
引用
收藏
页码:1588 / +
页数:2
相关论文
共 50 条
  • [1] Template-Assisted Hydrothermal Synthesis of Li2MnSiO4 as a Cathode Material for Lithium Ion Batteries
    Xie, Man
    Luo, Rui
    Chen, Renjie
    Wu, Feng
    Zhao, Taolin
    Wang, Qiuyan
    Li, Li
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (20) : 10779 - 10784
  • [2] Hydrothermal synthesis of the Li2MnSiO4/C nanocomposite as a cathode material for lithium-ion batteries
    Jiang, Xiaolei
    Xu, Huayun
    Liu, Jing
    Qian, Yitai
    MATERIALS LETTERS, 2013, 113 : 9 - 12
  • [3] Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries
    Zhang, Qianqian
    Zhuang, Quanchao
    Xu, Shoudong
    Qiu, Xiangyun
    Cui, Yongli
    Shi, Yueli
    Qiang, Yinghuai
    IONICS, 2012, 18 (05) : 487 - 494
  • [4] Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries
    Qianqian Zhang
    Quanchao Zhuang
    Shoudong Xu
    Xiangyun Qiu
    Yongli Cui
    Yueli Shi
    Yinghuai Qiang
    Ionics, 2012, 18 : 487 - 494
  • [5] Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries
    Li, Yi-Xiao
    Gong, Zheng-Liang
    Yang, Yong
    JOURNAL OF POWER SOURCES, 2007, 174 (02) : 528 - 532
  • [6] Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries
    Swietoslawski, M.
    Molenda, M.
    Furczon, K.
    Dziembaj, R.
    JOURNAL OF POWER SOURCES, 2013, 244 : 510 - 514
  • [7] Infrared Spectroscopy of Li2MnSiO4: A cathode material for Li ion batteries
    Pandey, Mukesh
    Ramar, Vishwanathan
    Balaya, Palani
    Kshirsagar, Rohidas J.
    PROCEEDINGS OF THE 59TH DAE SOLID STATE PHYSICS SYMPOSIUM 2014 (SOLID STATE PHYSICS), 2015, 1665
  • [8] Synthesis and characterization of high capacity Li2MnSiO4/C cathode material for lithium-ion battery
    Qu, Long
    Fang, Shaohua
    Yang, Li
    Hirano, Shin-ichi
    JOURNAL OF POWER SOURCES, 2014, 252 : 169 - 175
  • [9] Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4
    Fisher, Craig A. J.
    Kuganathan, Navaratnarajah
    Islam, M. Saiful
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (13) : 4207 - 4214
  • [10] Synthesis and transport properties of nanostructured lithium manganese silicate (Li2MnSiO4) as Li-ion battery cathode material
    Chaturvedi, Prerna
    Sil, Anjan
    Sharma, Yogesh
    SOLID STATE IONICS, 2016, 297 : 68 - 76