Defect chemistry and lithium-ion migration in polymorphs of the cathode material Li2MnSiO4

被引:117
|
作者
Fisher, Craig A. J. [1 ]
Kuganathan, Navaratnarajah [1 ]
Islam, M. Saiful [1 ]
机构
[1] Japan Fine Ceram Ctr, Nanostruct Res Lab, Atsuta Ku, Nagoya, Aichi, Japan
基金
英国工程与自然科学研究理事会;
关键词
POSITIVE-ELECTRODE MATERIALS; LI-ION; ELECTROCHEMICAL PERFORMANCE; CRYSTAL-STRUCTURE; BATTERIES; LI2FESIO4; MN; CO; FE; NI;
D O I
10.1039/c3ta00111c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The search for new low-cost and safe cathodes for next-generation lithium batteries has led to increasing interest in silicate materials. Here, a systematic comparison of crystal properties, defect chemistry and Li-ion migration behaviour of four polymorphs of Li2MnSiO4 is reported based on the results of atomistic simulations. The four polymorphs examined have Pmn2(1), Pmnb, P2(1)/n, and Pn symmetry. Lattice energies of all four polymorphs are very similar, with only a small energy preference for the two orthorhombic phases over the monoclinic phases, which explains the difficulty experimentalists have had preparing pure-phase samples. Defect formation energies of the polymorphs are also similar, with antisite Li/Mn defects the most energetically favourable. Detailed analysis of the Li-ion migration energy surfaces reveals high activation energies (around 0.9 to 1.7 eV) and curved trajectories. All four polymorphs are thus expected to be poor Li-ion conductors, requiring synthesis as nanoparticles to facilitate sufficient Li transfer. The results accord well with experimental reports on the structure, relative phase stabilities and electrochemical performance of materials in this system.
引用
收藏
页码:4207 / 4214
页数:8
相关论文
共 50 条
  • [1] High field phase transition of cathode material Li2MnSiO4 for lithium-ion battery
    Yang, Feng
    Xia, Zhengcai
    Huang, Sha
    Zhang, Xiaoxing
    Song, Yujie
    Xiao, Guiling
    Shao, Gangqin
    Liu, Yong
    Deng, Han
    Jiang, Dequan
    Ouyang, Zhongwen
    MATERIALS RESEARCH EXPRESS, 2020, 7 (02)
  • [2] Hydrothermal synthesis of the Li2MnSiO4/C nanocomposite as a cathode material for lithium-ion batteries
    Jiang, Xiaolei
    Xu, Huayun
    Liu, Jing
    Qian, Yitai
    MATERIALS LETTERS, 2013, 113 : 9 - 12
  • [3] Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries
    Swietoslawski, M.
    Molenda, M.
    Furczon, K.
    Dziembaj, R.
    JOURNAL OF POWER SOURCES, 2013, 244 : 510 - 514
  • [4] Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: a review
    Cheng, Qiaohuan
    He, Wen
    Zhang, Xudong
    Li, Mei
    Wang, Lianzhou
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 10772 - 10797
  • [5] Synthesis and characterization of high capacity Li2MnSiO4/C cathode material for lithium-ion battery
    Qu, Long
    Fang, Shaohua
    Yang, Li
    Hirano, Shin-ichi
    JOURNAL OF POWER SOURCES, 2014, 252 : 169 - 175
  • [6] Hydrothermal Synthesis of Li2MnSiO4 Powders as a Cathode Material for Lithium Ion Cells
    Luo, Shaohua
    Wang, Ming
    Zhu, Xu
    Geng, Guihong
    HIGH-PERFORMANCE CERAMICS VII, PTS 1 AND 2, 2012, 512-515 : 1588 - +
  • [7] Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries
    Zhang, Qianqian
    Zhuang, Quanchao
    Xu, Shoudong
    Qiu, Xiangyun
    Cui, Yongli
    Shi, Yueli
    Qiang, Yinghuai
    IONICS, 2012, 18 (05) : 487 - 494
  • [8] Comparative Study of the Cathode and Anode Performance of Li2MnSiO4 for Lithium-Ion Batteries
    Liu, Shuang-Shuang
    Song, Li-Jun
    Yu, Bao-Jun
    Wang, Cheng-Yang
    Li, Ming-Wei
    ELECTROCHIMICA ACTA, 2016, 188 : 145 - 152
  • [9] Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium ion batteries
    Qianqian Zhang
    Quanchao Zhuang
    Shoudong Xu
    Xiangyun Qiu
    Yongli Cui
    Yueli Shi
    Yinghuai Qiang
    Ionics, 2012, 18 : 487 - 494
  • [10] Study on the properties of Li2MnSiO4 as cathode material for lithium-ion batteries by sol-gel method
    Hou, Pengqing
    Feng, Jian
    Wang, Yafeng
    Wang, Luoxuan
    Li, Sinan
    Yang, Liu
    Luo, Shao-hua
    IONICS, 2020, 26 (04) : 1611 - 1616