RGB-D salient object detection: A survey

被引:13
|
作者
Tao Zhou [1 ]
Deng-Ping Fan [1 ]
Ming-Ming Cheng [2 ]
Jianbing Shen [1 ]
Ling Shao [1 ]
机构
[1] Inception Institute of Artificial Intelligence(IIAI)
[2] CS, Nankai University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Salient object detection, which simulates human visual perception in locating the most significant object(s) in a scene, has been widely applied to various computer vision tasks. Now, the advent of depth sensors means that depth maps can easily be captured; this additional spatial information can boost the performance of salient object detection. Although various RGB-D based salient object detection models with promising performance have been proposed over the past several years, an in-depth understanding of these models and the challenges in this field remains lacking. In this paper, we provide a comprehensive survey of RGBD based salient object detection models from various perspectives, and review related benchmark datasets in detail. Further, as light fields can also provide depth maps, we review salient object detection models and popular benchmark datasets from this domain too. Moreover, to investigate the ability of existing models to detect salient objects, we have carried out a comprehensive attribute-based evaluation of several representative RGB-D based salient object detection models. Finally, we discuss several challenges and open directions of RGB-D based salient object detection for future research. All collected models, benchmark datasets, datasets constructed for attribute-based evaluation, and related code are publicly available at https://github.com/taozh2017/RGBD-SODsurvey.
引用
收藏
页码:37 / 69
页数:33
相关论文
共 50 条
  • [41] SALIENT OBJECT DETECTION FOR RGB-D IMAGE VIA SALIENCY EVOLUTION
    Guo, Jingfan
    Ren, Tongwei
    Bei, Jia
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [42] MULTI-MODAL TRANSFORMER FOR RGB-D SALIENT OBJECT DETECTION
    Song, Peipei
    Zhang, Jing
    Koniusz, Piotr
    Barnes, Nick
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 2466 - 2470
  • [43] RGB-D Fusion Based on Fuzzy Optimization for Salient Object Detection
    Bhuyan, Sudipta
    Sen, Debashis
    Deb, Sankha
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 523 - 531
  • [44] Context-aware network for RGB-D salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Miao, Jun
    Ye, Qixiang
    PATTERN RECOGNITION, 2021, 111
  • [45] CDNet: Complementary Depth Network for RGB-D Salient Object Detection
    Jin, Wen-Da
    Xu, Jun
    Han, Qi
    Zhang, Yi
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3376 - 3390
  • [46] Scale Adaptive Fusion Network for RGB-D Salient Object Detection
    Kong, Yuqiu
    Zheng, Yushuo
    Yao, Cuili
    Liu, Yang
    Wang, He
    COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 608 - 625
  • [47] RGB-D Salient Object Detection by a CNN With Multiple Layers Fusion
    Huang, Rui
    Xing, Yan
    Wang, ZeZheng
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 552 - 556
  • [48] Salient object detection for RGB-D images by generative adversarial network
    Liu, Zhengyi
    Tang, Jiting
    Xiang, Qian
    Zhao, Peng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (35-36) : 25403 - 25425
  • [49] CoCNN: RGB-D deep fusion for stereoscopic salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Cai, Zhi
    Miao, Jun
    Ye, Qixiang
    PATTERN RECOGNITION, 2020, 104 (104)
  • [50] An adaptive guidance fusion network for RGB-D salient object detection
    Haodong Sun
    Yu Wang
    Xinpeng Ma
    Signal, Image and Video Processing, 2024, 18 : 1683 - 1693