RGB-D salient object detection: A survey

被引:13
|
作者
Tao Zhou [1 ]
Deng-Ping Fan [1 ]
Ming-Ming Cheng [2 ]
Jianbing Shen [1 ]
Ling Shao [1 ]
机构
[1] Inception Institute of Artificial Intelligence(IIAI)
[2] CS, Nankai University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
Salient object detection, which simulates human visual perception in locating the most significant object(s) in a scene, has been widely applied to various computer vision tasks. Now, the advent of depth sensors means that depth maps can easily be captured; this additional spatial information can boost the performance of salient object detection. Although various RGB-D based salient object detection models with promising performance have been proposed over the past several years, an in-depth understanding of these models and the challenges in this field remains lacking. In this paper, we provide a comprehensive survey of RGBD based salient object detection models from various perspectives, and review related benchmark datasets in detail. Further, as light fields can also provide depth maps, we review salient object detection models and popular benchmark datasets from this domain too. Moreover, to investigate the ability of existing models to detect salient objects, we have carried out a comprehensive attribute-based evaluation of several representative RGB-D based salient object detection models. Finally, we discuss several challenges and open directions of RGB-D based salient object detection for future research. All collected models, benchmark datasets, datasets constructed for attribute-based evaluation, and related code are publicly available at https://github.com/taozh2017/RGBD-SODsurvey.
引用
收藏
页码:37 / 69
页数:33
相关论文
共 50 条
  • [31] Feature Calibrating and Fusing Network for RGB-D Salient Object Detection
    Zhang, Qiang
    Qin, Qi
    Yang, Yang
    Jiao, Qiang
    Han, Jungong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1493 - 1507
  • [32] GroupTransNet: Group transformer network for RGB-D salient object detection
    Fang, Xian
    Jiang, Mingfeng
    Zhu, Jinchao
    Shao, Xiuli
    Wang, Hongpeng
    NEUROCOMPUTING, 2024, 594
  • [33] Asymmetric deep interaction network for RGB-D salient object detection
    Wang, Feifei
    Li, Yongming
    Wang, Liejun
    Zheng, Panpan
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [34] Triple-Complementary Network for RGB-D Salient Object Detection
    Huang, Rui
    Xing, Yan
    Zou, Yaobin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 775 - 779
  • [35] Self-Supervised Pretraining for RGB-D Salient Object Detection
    Zhao, Xiaoqi
    Pang, Youwei
    Zhang, Lihe
    Lu, Huchuan
    Ruan, Xiang
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 3463 - 3471
  • [36] DMNet: Dynamic Memory Network for RGB-D Salient Object Detection
    Du, Haishun
    Zhang, Zhen
    Zhang, Minghao
    Qiao, Kangyi
    DIGITAL SIGNAL PROCESSING, 2023, 142
  • [37] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE Transactions on Image Processing, 2021, 30 : 3528 - 3542
  • [38] HOSO: Histogram Of Surface Orientation for RGB-D Salient Object Detection
    Feng, David
    Barnes, Nick
    You, Shaodi
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 291 - 298
  • [39] An adaptive guidance fusion network for RGB-D salient object detection
    Sun, Haodong
    Wang, Yu
    Ma, Xinpeng
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (02) : 1683 - 1693
  • [40] Delving into Calibrated Depth for Accurate RGB-D Salient Object Detection
    Li, Jingjing
    Ji, Wei
    Zhang, Miao
    Piao, Yongri
    Lu, Huchuan
    Cheng, Li
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (04) : 855 - 876