H?rmander Type Multipliers on Anisotropic Hardy Spaces

被引:0
|
作者
Jiao CHEN [1 ]
Liang HUANG [2 ]
机构
[1] School of Mathematical Sciences, Chongqing Normal University
[2] School of Mathematical Sciences, Beijing Normal University
关键词
H?rmander multiplier; Littlewood–Paley’s inequality; anisotropic Hardy space; anisotropic Sobolev spaces;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The main purpose of this paper is to establish, using the Littlewood–Paley–Stein theory(in particular, the Littlewood–Paley–Stein square functions), a Calderón–Torchinsky type theorem for the following Fourier multipliers on anisotropic Hardy spaces H~p(R~n; A) associated with expensive dilation A:■Our main Theorem is the following: Assume that m(ξ) is a function on R~n satisfying ■with s > ζ(1/p-1/2). Then Tis bounded from H~p(R~n; A) to H~p(R~n; A) for all 0 < p ≤ 1 and ■where A~* denotes the transpose of A. Here we have used the notations m(ξ) = m(Aξ)φ(ξ) and φ(ξ) is a suitable cut-off function on R~n, and W~s(A~*) is an anisotropic Sobolev space associated with expansive dilation A~* on R~n.
引用
收藏
页码:1841 / 1853
页数:13
相关论文
共 50 条
  • [31] MULTIPLIERS ON REAL HARDY-SPACES
    LIU, ZX
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1992, 35 (01): : 55 - 69
  • [32] Fourier multipliers on the real Hardy spaces
    Krol, Sebastian
    ARCHIV DER MATHEMATIK, 2016, 106 (05) : 457 - 470
  • [33] Hormander's multipliers for the weighted Herz-type Hardy spaces
    Lee, Ming Yi
    Lin, Chin Cheng
    Lin, Yu Tien
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (05) : 1509 - 1518
  • [34] Hardy-Sobolev spaces and their multipliers
    CAO GuangFu
    HE Li
    ScienceChina(Mathematics), 2014, 57 (11) : 2361 - 2368
  • [35] Multipliers for Jacobi expansions in the Hardy spaces
    Xue, Zhong
    Shi, Yehao
    Li, Zhongkai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [36] Multipliers in Hardy-Sobolev spaces
    Ortega, Joaquin M.
    Fabrega, Joan
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (04) : 535 - 560
  • [37] On elliptic systems in Hörmander spaces
    A. A. Murach
    Ukrainian Mathematical Journal, 2009, 61 : 467 - 477
  • [38] On dual spaces of anisotropic Hardy spaces
    Dekel, Shai
    Weissblat, Tal
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (17-18) : 2078 - 2092
  • [39] A Survey on Some Anisotropic Hardy-Type Function Spaces
    Jun Liu
    Dorothee D.Haroske
    Dachun Yang
    AnalysisinTheoryandApplications, 2020, 36 (04) : 373 - 456
  • [40] A Survey on Some Anisotropic Hardy-Type Function Spaces
    Liu, Jun
    Haroske, Dorothee D.
    Yang, Dachun
    ANALYSIS IN THEORY AND APPLICATIONS, 2020, 36 (04) : 373 - 456