H?rmander Type Multipliers on Anisotropic Hardy Spaces

被引:0
|
作者
Jiao CHEN [1 ]
Liang HUANG [2 ]
机构
[1] School of Mathematical Sciences, Chongqing Normal University
[2] School of Mathematical Sciences, Beijing Normal University
关键词
H?rmander multiplier; Littlewood–Paley’s inequality; anisotropic Hardy space; anisotropic Sobolev spaces;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
The main purpose of this paper is to establish, using the Littlewood–Paley–Stein theory(in particular, the Littlewood–Paley–Stein square functions), a Calderón–Torchinsky type theorem for the following Fourier multipliers on anisotropic Hardy spaces H~p(R~n; A) associated with expensive dilation A:■Our main Theorem is the following: Assume that m(ξ) is a function on R~n satisfying ■with s > ζ(1/p-1/2). Then Tis bounded from H~p(R~n; A) to H~p(R~n; A) for all 0 < p ≤ 1 and ■where A~* denotes the transpose of A. Here we have used the notations m(ξ) = m(Aξ)φ(ξ) and φ(ξ) is a suitable cut-off function on R~n, and W~s(A~*) is an anisotropic Sobolev space associated with expansive dilation A~* on R~n.
引用
收藏
页码:1841 / 1853
页数:13
相关论文
共 50 条
  • [21] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Peng Chen
    Xuan Thinh Duong
    Ji Li
    Lesley A. Ward
    Lixin Yan
    Journal of Fourier Analysis and Applications, 2017, 23 : 21 - 64
  • [22] Marcinkiewicz-Type Spectral Multipliers on Hardy and Lebesgue Spaces on Product Spaces of Homogeneous Type
    Chen, Peng
    Xuan Thinh Duong
    Li, Ji
    Ward, Lesley A.
    Yan, Lixin
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2017, 23 (01) : 21 - 64
  • [23] Weak type estimates on certain Hardy spaces for smooth cone type multipliers
    Kim, YC
    Hong, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 318 (02) : 476 - 497
  • [24] Multipliers for Jacobi expansions in the Hardy spaces
    Zhong Xue
    Yehao Shi
    Zhongkai Li
    Journal of Inequalities and Applications, 2020
  • [25] On multipliers for Hardy-Sobolev spaces
    Beatrous, Frank
    Burbea, Jacob
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (06) : 2125 - 2133
  • [26] Fourier multipliers on the real Hardy spaces
    Sebastian Król
    Archiv der Mathematik, 2016, 106 : 457 - 470
  • [27] Hardy-Sobolev spaces and their multipliers
    GuangFu Cao
    Li He
    Science China Mathematics, 2014, 57 : 2361 - 2368
  • [28] Multipliers in Hardy-Sobolev Spaces
    Joaquín M. Ortega
    Joan Fàbrega
    Integral Equations and Operator Theory, 2006, 55 : 535 - 560
  • [29] Hardy-Sobolev spaces and their multipliers
    Cao GuangFu
    He Li
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (11) : 2361 - 2368
  • [30] TRILINEAR FOURIER MULTIPLIERS ON HARDY SPACES
    Lee, Jin Bong
    Park, Bae Jun
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (05) : 2217 - 2278