Generalized Polynomial Chaos for Nonlinear Random Pantograph Equations

被引:3
|
作者
Wen-jie SHI [1 ]
Cheng-jian ZHANG [2 ]
机构
[1] School of mathematics and statistics,Huazhong University of Science and Technology
[2] School of Mathematics and Computer Science,Wuhan Textile University
基金
中国国家自然科学基金;
关键词
generalized polynomial chaos; random pantograph equations; error estimation; finite-dimensional noise;
D O I
暂无
中图分类号
O211.63 [随机微分方程];
学科分类号
摘要
This paper is concerned with the application of generalized polynomial chaos(gPC) method to nonlinear random pantograph equations. An error estimation of gPC method is derived. The global error analysis is given for the error arising from finite-dimensional noise(FDN) assumption, projection error, aliasing error and discretization error. In the end, with several numerical experiments, the theoretical results are further illustrated.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [31] ON THE CONVERGENCE OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
    Ernst, Oliver G.
    Mugler, Antje
    Starkloff, Hans-Joerg
    Ullmann, Elisabeth
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2012, 46 (02) : 317 - 339
  • [32] Polynomial chaos for simulating random volatilities
    Pulch, Roland
    van Emmerich, Cathrin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 80 (02) : 245 - 255
  • [33] Robust design optimization under dependent random variables by a generalized polynomial chaos expansion
    Lee, Dongjin
    Rahman, Sharif
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2021, 63 (05) : 2425 - 2457
  • [34] Exponential stability of random impulsive pantograph equations
    Vinodkumar, A.
    Senthilkumar, T.
    Liu, Zhongmin
    Li, Xiaodi
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6700 - 6715
  • [35] An adaptive multi-element generalized polynomial chaos method for stochastic differential equations
    Wan, XL
    Karniadakis, GE
    JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 209 (02) : 617 - 642
  • [36] LOCAL POLYNOMIAL CHAOS EXPANSION FOR LINEAR DIFFERENTIAL EQUATIONS WITH HIGH DIMENSIONAL RANDOM INPUTS
    Chen, Yi
    Jakeman, John
    Gittelson, Claude
    Xiu, Dongbin
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (01): : A79 - A102
  • [37] Dynamical Polynomial Chaos Expansions and Long Time Evolution of Differential Equations with Random Forcing
    Ozen, H. Cagan
    Bal, Guillaume
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2016, 4 (01): : 609 - 635
  • [38] Generalized Polynomial Chaos-Based Fault Detection and Classification for Nonlinear Dynamic Processes
    Du, Yuncheng
    Duever, Thomas A.
    Budman, Hector
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (07) : 2069 - 2082
  • [39] Probability density evolution method and polynomial chaos expansion for nonlinear random vibration analysis
    Peng, Y. B.
    Li, J.
    Chen, J. B.
    APPLICATIONS OF STATISTICS AND PROBABILITY IN CIVIL ENGINEERING, 2011, : 64 - 72
  • [40] EXISTENCE OF SOLUTIONS OF NONLINEAR FRACTIONAL PANTOGRAPH EQUATIONS
    Balachandran, K.
    Kiruthika, S.
    Trujillo, J. J.
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 712 - 720