Generalized Polynomial Chaos for Nonlinear Random Pantograph Equations

被引:3
|
作者
Wen-jie SHI [1 ]
Cheng-jian ZHANG [2 ]
机构
[1] School of mathematics and statistics,Huazhong University of Science and Technology
[2] School of Mathematics and Computer Science,Wuhan Textile University
基金
中国国家自然科学基金;
关键词
generalized polynomial chaos; random pantograph equations; error estimation; finite-dimensional noise;
D O I
暂无
中图分类号
O211.63 [随机微分方程];
学科分类号
摘要
This paper is concerned with the application of generalized polynomial chaos(gPC) method to nonlinear random pantograph equations. An error estimation of gPC method is derived. The global error analysis is given for the error arising from finite-dimensional noise(FDN) assumption, projection error, aliasing error and discretization error. In the end, with several numerical experiments, the theoretical results are further illustrated.
引用
收藏
页码:685 / 700
页数:16
相关论文
共 50 条
  • [21] Comparison of polynomial chaos and Monte Carlo for random ordinary differential equations
    Cayama, Jorgey
    Gonzalez-Parra, Gilberto
    CIENCIA E INGENIERIA, 2012, 33 (01): : 9 - 19
  • [22] Computing Invariant Sets of Random Differential Equations Using Polynomial Chaos
    Breden, Maxime
    Kuehn, Christian
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2020, 19 (01): : 577 - 618
  • [23] Uncertainty quantification of nonlinear distributed parameter systems using generalized polynomial chaos
    Janya-anurak, Chettapong
    Bernard, Thomas
    Beyerer, Juergen
    AT-AUTOMATISIERUNGSTECHNIK, 2019, 67 (04) : 283 - 303
  • [24] Generalized Hermite Polynomial Chaos for Variability Analysis of Macromodels Embedded in Nonlinear Circuits
    Rufuie, Mehrdad Rahimzadeh
    Gad, Emad
    Nakhla, Michel
    Achar, Ramachandra
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2014, 4 (04): : 673 - 684
  • [25] Uncertainty quantification/propagation in nonlinear models Robust reduction - generalized polynomial chaos
    Chikhaoui, Khaoula
    Bouhaddi, Noureddine
    Kacem, Najib
    Guedri, Mohamed
    Soula, Mohamed
    ENGINEERING COMPUTATIONS, 2017, 34 (04) : 1082 - 1106
  • [26] Adaptive polynomial chaos expansions applied to statistics of extremes in nonlinear random vibration
    Li, R
    Ghanem, R
    PROBABILISTIC ENGINEERING MECHANICS, 1998, 13 (02) : 125 - 136
  • [27] Generalized Gamma-Laguerre Polynomial Chaos to Model Random Bending of Wearable Antennas
    Rogier, Hendrik
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2022, 21 (06): : 1243 - 1247
  • [28] Robust design optimization under dependent random variables by a generalized polynomial chaos expansion
    Dongjin Lee
    Sharif Rahman
    Structural and Multidisciplinary Optimization, 2021, 63 : 2425 - 2457
  • [29] GENERALIZED POLYNOMIAL CHAOS EXPANSIONS WITH WEIGHTS
    Obermaier, Josef
    Stavropoulou, Faidra
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2015, 18 (01) : 30 - 45
  • [30] Performance evaluation of generalized polynomial chaos
    Xiu, DB
    Lucor, D
    Su, CH
    Karniadakis, GE
    COMPUTATIONAL SCIENCE - ICCS 2003, PT IV, PROCEEDINGS, 2003, 2660 : 346 - 354