Further investigation of CO2 energization fracturing in shale reservoir- from microscopic mechanism to field application

被引:0
|
作者
Tang, Weiyu [1 ,2 ]
Zhou, Fujian [1 ,2 ]
Sheng, Jamse J. [3 ]
Wang, Xiukun [1 ,2 ]
Jiang, Tingxue [4 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R China
[3] Texas Tech Univ, Bob L Herd Dept Petr Engn, Lubbock, TX 43111 USA
[4] Sinopec Res Inst Petr Engn, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon sequestration; Enhanced oil recovery; Numerical simulation; CO 2 energization fracturing; HUFF-N-PUFF; SUPERCRITICAL CO2; CARBON-DIOXIDE; OIL; TIGHT; GAS; WATER; DIFFUSION; INJECTION; PRESSURE;
D O I
10.1016/j.fuel.2024.134156
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 energization fracturing technology offers a novel approach to enhancing both carbon capture efficiency and hydrocarbon recovery in shale reservoirs. Despite its potential, the effects of different injection sequences of water-based fracturing fluids and CO2 remain unclear. To address this, we conducted experimental studies using nuclear magnetic resonance (NMR) and computed tomography (CT) imaging to investigate the fracture characteristics and microscopic oil recovery associated with different injection sequences. Additionally, field-scale numerical simulations were performed based on existing fracturing operations. Compared to CO2 postfracturing methods, CO2 pre-fracturing achieves superior oil recovery, particularly by mobilizing oil in micropores, while both methods exhibited similar recovery in macropores. Meanwhile, NMR and CT results revealed that fractures generated by CO2 pre-fracturing maintained higher conductivity under closure conditions. Numerical simulations further demonstrated that CO2 post-fracturing led to a more significant initial increase in reservoir pressure, resulting in higher short-term production. However, CO2 pre-fracturing promoted the development of a larger stimulated reservoir volume (SRV), achieved higher CO2 sequestration efficiency, and provided better long-term reservoir pressure maintenance, leading to higher oil production. The Enhanced oil recovery (EOR) mechanism of CO2 pre-was also evaluated. The increased permeability of branch fractures contributed most significantly to oil production, followed by pressure enhancement, larger SRV, and crude oil modification. Field test results confirmed that CO2 pre-injection generated more fractures and increased oil production by 3-7 times, underscoring its promise as a highly effective fracturing technology.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] Experimental Evaluation of the Rheological Properties and Influencing Factors of Gel Fracturing Fluid Mixed with CO2 for Shale Gas Reservoir Stimulation
    Wang, Mingwei
    Wu, Wen
    Chen, Shuyang
    Li, Song
    Li, Tao
    Ni, Gensheng
    Fu, Yu
    Zhou, Wen
    GELS, 2022, 8 (09)
  • [32] A review of the flow characteristics of shale oil and the microscopic mechanism of CO2 flooding by molecular dynamics simulation
    Huang, Xinmiao
    Yu, Xinjing
    Li, Xiao
    Wei, Haopei
    Han, Denglin
    Lin, Wei
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [33] Microscopic mechanism of CO2 huff-n-puff promoting shale oil mobilization in nanopores
    Yang, Yongfei
    Song, Huaisen
    Li, Yingwen
    Liu, Fugui
    Zhang, Qi
    Wang, Jinlei
    Imani, Gloire
    Zhang, Lei
    Sun, Hai
    Zhong, Junjie
    Zhang, Kai
    Yao, Jun
    FUEL, 2024, 371
  • [34] Microscopic mechanism of enhancing shale oil recovery through CO2 2 flooding- insights from molecular dynamics simulations
    Liu, Feng
    Gao, Xiaoquan
    Du, Jia
    Lin, Liming
    Hou, Dali
    Luo, Jin
    Zhao, Jinsheng
    JOURNAL OF MOLECULAR LIQUIDS, 2024, 410
  • [35] CO2 huff-n-puff combined with radial borehole fracturing to enhance oil recovery and store CO2in a shale oil reservoir
    Dai, Jiacheng
    Wang, Tianyu
    Tian, Kangjian
    Weng, Jintao
    Li, Jingbin
    Li, Gensheng
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 228
  • [36] Shale Oil Reservoir Production Characteristics in Microscopic Pores Developed by Water/CO2 Huff-n-Puff
    Xie, Zehui
    Xiong, Yu
    Song, Zhaojie
    Chang, Jiajing
    Zhang, Kaixing
    Fan, Zhaoyu
    ENERGY & FUELS, 2025, 39 (07) : 3517 - 3527
  • [37] Experimental Investigation on the Fractures Induced by Hydraulic Fracturing Using Freshwater and Supercritical CO2 in Shale Under Uniaxial Stress
    He, Jianming
    Zhang, Yixiang
    Li, Xiao
    Wan, Xiaole
    ROCK MECHANICS AND ROCK ENGINEERING, 2019, 52 (10) : 3585 - 3596
  • [38] Experimental Investigation on the Fractures Induced by Hydraulic Fracturing Using Freshwater and Supercritical CO2 in Shale Under Uniaxial Stress
    Jianming He
    Yixiang Zhang
    Xiao Li
    Xiaole Wan
    Rock Mechanics and Rock Engineering, 2019, 52 : 3585 - 3596
  • [39] Enhancing coalbed methane recovery with liquid CO2 fracturing in underground coal mine: From experiment to field application
    Fan, Shixing
    Zhang, Duo
    Wen, Hu
    Cheng, Xiaojiao
    Liu, Xiangrong
    Yu, Zhijin
    Hu, Bosheng
    FUEL, 2021, 290
  • [40] Experimental Investigation of CO2 Outflow from a High-Pressure Reservoir
    Ahmad, Mohammad
    Buit, Luuk
    Florisson, Onno
    Hulsbosch-Dam, Corina
    Bogemann-van Osch, Marlies
    Spruijt, Mark
    Davolio, Filippo
    GHGT-11, 2013, 37 : 3005 - 3017