Further investigation of CO2 energization fracturing in shale reservoir- from microscopic mechanism to field application

被引:0
|
作者
Tang, Weiyu [1 ,2 ]
Zhou, Fujian [1 ,2 ]
Sheng, Jamse J. [3 ]
Wang, Xiukun [1 ,2 ]
Jiang, Tingxue [4 ]
机构
[1] China Univ Petr, State Key Lab Petr Resources & Prospecting, Beijing 102249, Peoples R China
[2] China Univ Petr, Unconvent Petr Res Inst, Beijing 102249, Peoples R China
[3] Texas Tech Univ, Bob L Herd Dept Petr Engn, Lubbock, TX 43111 USA
[4] Sinopec Res Inst Petr Engn, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon sequestration; Enhanced oil recovery; Numerical simulation; CO 2 energization fracturing; HUFF-N-PUFF; SUPERCRITICAL CO2; CARBON-DIOXIDE; OIL; TIGHT; GAS; WATER; DIFFUSION; INJECTION; PRESSURE;
D O I
10.1016/j.fuel.2024.134156
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
CO2 energization fracturing technology offers a novel approach to enhancing both carbon capture efficiency and hydrocarbon recovery in shale reservoirs. Despite its potential, the effects of different injection sequences of water-based fracturing fluids and CO2 remain unclear. To address this, we conducted experimental studies using nuclear magnetic resonance (NMR) and computed tomography (CT) imaging to investigate the fracture characteristics and microscopic oil recovery associated with different injection sequences. Additionally, field-scale numerical simulations were performed based on existing fracturing operations. Compared to CO2 postfracturing methods, CO2 pre-fracturing achieves superior oil recovery, particularly by mobilizing oil in micropores, while both methods exhibited similar recovery in macropores. Meanwhile, NMR and CT results revealed that fractures generated by CO2 pre-fracturing maintained higher conductivity under closure conditions. Numerical simulations further demonstrated that CO2 post-fracturing led to a more significant initial increase in reservoir pressure, resulting in higher short-term production. However, CO2 pre-fracturing promoted the development of a larger stimulated reservoir volume (SRV), achieved higher CO2 sequestration efficiency, and provided better long-term reservoir pressure maintenance, leading to higher oil production. The Enhanced oil recovery (EOR) mechanism of CO2 pre-was also evaluated. The increased permeability of branch fractures contributed most significantly to oil production, followed by pressure enhancement, larger SRV, and crude oil modification. Field test results confirmed that CO2 pre-injection generated more fractures and increased oil production by 3-7 times, underscoring its promise as a highly effective fracturing technology.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding
    Lan, Yan
    Yang, Zhongqing
    Wang, Peng
    Yan, Yunfei
    Zhang, Li
    Ran, Jingyu
    FUEL, 2019, 238 : 412 - 424
  • [22] Experimental Research of the Characteristics of Microscopic Pore Production during CO2 Displacement in a Shale Oil Reservoir
    Cui, Maolei
    Lun, Zengmin
    Wang, Rui
    Xiao, Pufu
    JOURNAL OF ENERGY ENGINEERING, 2023, 149 (06)
  • [23] Adsorption behavior and mechanism analysis of siloxane thickener for CO2 fracturing fluid on shallow shale soil
    Li, Qiang
    Wang, Fuling
    Wang, Yanling
    Bai, Baojun
    Zhang, Jinyan
    Lili, Cao
    Sun, Quan
    Wang, Yong
    Forson, Kobina
    JOURNAL OF MOLECULAR LIQUIDS, 2023, 376
  • [24] Pore-scale experimental investigation of microscopic formation mechanism of remaining shale oil and trapped CO2 during water-supercritical CO2 flooding
    Li, Lian
    Kang, Yong
    Liu, Feng
    Hu, Yi
    Pan, Haizeng
    Yuan, Quan
    GEOENERGY SCIENCE AND ENGINEERING, 2025, 247
  • [25] Molecular insight into the oil displacement mechanism of CO2 flooding in the nanopores of shale oil reservoir
    Dong, Xiao-Hu
    Xu, Wen-Jing
    Liu, Hui-Qing
    Chen, Zhang-Xing
    Lu, Ning
    PETROLEUM SCIENCE, 2023, 20 (06) : 3516 - 3529
  • [26] Mechanism of CO2 flooding in shale reservoirs - insights from nanofluids
    Pan, Xiuxiu
    Sun, Linghui
    Liu, Qingjie
    Huo, Xu
    Chen, Feiyu
    Wang, Yuhan
    Feng, Chun
    Zhang, Zhirong
    Ni, Shumin
    NANOSCALE, 2025, 17 (03) : 1524 - 1535
  • [27] CO2 Adsorption onto Water- Bearing Shale: Insights from Molecular Dynamics and Implications on CO2 Prestorage Fracturing
    Wang, Bo
    Zhao, Chi
    Qin, Weibo
    Guo, Shiyuan
    Xu, Xingguang
    Huang, Shuyue
    SPE JOURNAL, 2025, 30 (01): : 376 - 390
  • [28] Optimization and Field Application of CO2 Gas Fracturing Technique for Enhancing CBM Extraction
    Xuelin Yang
    Guangcai Wen
    Tingkan Lu
    Bo Wang
    Xuelong Li
    Jie Cao
    Genshuai Lv
    Guanghua Yuan
    Natural Resources Research, 2020, 29 : 1875 - 1896
  • [29] Optimization and Field Application of CO2 Gas Fracturing Technique for Enhancing CBM Extraction
    Yang, Xuelin
    Wen, Guangcai
    Lu, Tingkan
    Wang, Bo
    Li, Xuelong
    Cao, Jie
    Lv, Genshuai
    Yuan, Guanghua
    NATURAL RESOURCES RESEARCH, 2020, 29 (03) : 1875 - 1896
  • [30] Investigation of the CO2 Pre-Fracturing Mechanism for Enhancing Fracture Propagation and Stimulated Reservoir Volume in Ultra-Deep Oil Reservoirs
    Liu, Liming
    Ding, Ran
    Chen, Enqing
    Zhang, Cheng
    ENERGIES, 2025, 18 (01)