Deep Learning-based Segmentation of CT Scans Predicts Disease Progression and Mortality in IPF

被引:0
|
作者
Thillai, M. [1 ]
Oldham, J. [2 ]
Ruggiero, A. [1 ]
Kanavati, F. [3 ]
McLellan, T. R. [1 ]
Saini, G. [4 ]
Johnson, S. [4 ]
Fahy, W. [5 ]
Ble, F. -X. [6 ]
Azim, A. [6 ]
Ostridge, K. [6 ]
Platt, A. [6 ]
Belvisi, M. G. [6 ]
Maher, T. M. [7 ]
Molyneaux, P. L. [8 ]
机构
[1] Royal Papworth Hosp, Cambridge, England
[2] Univ Michigan, Ann Arbor, MI USA
[3] Qureight, Cambridge, England
[4] Univ Nottingham, Nottingham, England
[5] GSK, London, England
[6] AstraZeneca, Cambridge, England
[7] USC, Keck Sch Med, Los Angeles, CA USA
[8] Imperial Coll London, London, England
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A5102
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Deep learning-based segmentation of malignant pleural mesothelioma tumor on computed tomography scans: application to scans demonstrating pleural effusion
    Gudmundsson, Eyjolfur
    Straus, Christopher M.
    Li, Feng
    Armato, Samuel G., III
    JOURNAL OF MEDICAL IMAGING, 2020, 7 (01)
  • [42] A Comparative Study of Deep Learning-Based Whole-Brain Segmentation Algorithms for Head MRI Scans
    Gi, Y.
    Yoon, M.
    Jung, G. E.
    Ko, Y.
    Lim, H.
    Jo, Y.
    Hong, J.
    MEDICAL PHYSICS, 2024, 51 (10) : 7699 - 7700
  • [43] Robust Deep Learning-based Segmentation of Glioblastoma on Routine Clinical MRI Scans Using Sparsified Training
    Eijgelaar, Roelant S.
    Visser, Martin
    Muller, Domenique M. J.
    Barkhof, Frederik
    Vrenken, Hugo
    van Herk, Marcel
    Bello, Lorenzo
    Nibali, Marco Conti
    Rossi, Marco
    Sciortino, Tommaso
    Berger, Mitchel S.
    Hervey-Jumper, Shawn
    Kiesel, Barbara
    Widhalm, Georg
    Furtner, Julia
    Robe, Pierre A. J. T.
    Mandonnet, Emmanuel
    Hamer, Philip C. De Witt
    de Munck, Jan C.
    Witte, Marnix G.
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (05) : 1 - 9
  • [44] Deep Learning Assessment of Emphysema Progression at CT Predicts Outcomes
    Grenier, Philppe A.
    RADIOLOGY, 2022, 304 (03) : 680 - 682
  • [45] Emphysema Progression at CT by Deep Learning Predicts Functional Impairment and Mortality: Results from the COPDGene Study
    Oh, Andrea S.
    Baraghoshi, David
    Lynch, David A.
    Ash, Samuel Y.
    Crapo, James D.
    Humphries, Stephen M.
    RADIOLOGY, 2022, 304 (03) : 672 - 679
  • [46] DentalSegmentator: Robust open source deep learning-based CT and CBCT image segmentation
    Dot, Gauthier
    Chaurasia, Akhilanand
    Dubois, Guillaume
    Savoldelli, Charles
    Haghighat, Sara
    Azimian, Sarina
    Taramsari, Ali Rahbar
    Sivaramakrishnan, Gowri
    Issa, Julien
    Dubey, Abhishek
    Schouman, Thomas
    Gajny, Laurent
    JOURNAL OF DENTISTRY, 2024, 147
  • [47] PSMA-PET improves deep learning-based automated CT kidney segmentation
    Leube, Julian
    Horn, Matthias
    Hartrampf, Philipp E.
    Buck, Andreas K.
    Lassmann, Michael
    Tran-Gia, Johannes
    ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2024, 34 (02): : 231 - 241
  • [48] Deep Learning-Based Auto-Segmentation of OARs in Head and Neck CT Images
    Shen, Z.
    Garsa, A.
    Sun, S.
    Bai, N.
    Zhang, C.
    Shiu, A.
    Chang, E.
    Yang, W.
    MEDICAL PHYSICS, 2020, 47 (06) : E598 - E598
  • [49] A deep learning-based approach to automatic proximal femur segmentation in quantitative CT images
    Yu Deng
    Ling Wang
    Chen Zhao
    Shaojie Tang
    Xiaoguang Cheng
    Hong-Wen Deng
    Weihua Zhou
    Medical & Biological Engineering & Computing, 2022, 60 : 1417 - 1429
  • [50] Deep Learning-based Multi-organ CT Segmentation with Adversarial Data Augmentation
    Pan, Shaoyan
    Lo, Shao-Yuan
    Huang, Min
    Ma, Chaoqiong
    Wynne, Jacob
    Wang, Tonghe
    Liu, Tian
    Yang, Xiaofeng
    MEDICAL IMAGING 2023, 2023, 12464