Deep Learning-based Segmentation of CT Scans Predicts Disease Progression and Mortality in IPF

被引:0
|
作者
Thillai, M. [1 ]
Oldham, J. [2 ]
Ruggiero, A. [1 ]
Kanavati, F. [3 ]
McLellan, T. R. [1 ]
Saini, G. [4 ]
Johnson, S. [4 ]
Fahy, W. [5 ]
Ble, F. -X. [6 ]
Azim, A. [6 ]
Ostridge, K. [6 ]
Platt, A. [6 ]
Belvisi, M. G. [6 ]
Maher, T. M. [7 ]
Molyneaux, P. L. [8 ]
机构
[1] Royal Papworth Hosp, Cambridge, England
[2] Univ Michigan, Ann Arbor, MI USA
[3] Qureight, Cambridge, England
[4] Univ Nottingham, Nottingham, England
[5] GSK, London, England
[6] AstraZeneca, Cambridge, England
[7] USC, Keck Sch Med, Los Angeles, CA USA
[8] Imperial Coll London, London, England
关键词
D O I
暂无
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
A5102
引用
收藏
页数:1
相关论文
共 50 条
  • [21] Accelerating segmentation of fossil CT scans through Deep Learning
    Knutsen, Espen M.
    Konovalov, Dmitry A.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] Deep learning-based segmentation of gallbladder cancer on abdominal computed tomography scans: a multicenter study
    Gupta, Pankaj
    Dutta, Niharika
    Tomar, Ajay
    Singh, Shravya
    Choudhary, Sonam
    Mehta, Nandita
    Mehta, Vansha
    Sheth, Rishabh
    Srivastava, Divyashree
    Thanihai, Salai
    Singla, Palki
    Prakash, Gaurav
    Yadav, Thakur
    Kaman, Lileswar
    Irrinki, Santosh
    Singh, Harjeet
    Shah, Niket
    Choudhari, Amit
    Patkar, Shraddha
    Goel, Mahesh
    Yadav, Rajnikant
    Gupta, Archana
    Kumar, Ishan
    Seth, Kajal
    Dutta, Usha
    Arora, Chetan
    ABDOMINAL RADIOLOGY, 2025,
  • [23] Automated Deep Learning-based Detection and Segmentation of Lung Tumors at CT Imaging
    Kashyap, Mehr
    Wang, Xi
    Panjwani, Neil
    Hasan, Mohammad
    Zhang, Qin
    Huang, Charles
    Bush, Karl
    Chin, Alexander
    Vitzthum, Lucas K.
    Dong, Peng
    Zaky, Sandra
    Loo, Billy W.
    Diehn, Maximilian
    Xing, Lei
    Li, Ruijiang
    Gensheimer, Michael F.
    RADIOLOGY, 2025, 314 (01)
  • [24] Deep learning-based atherosclerotic coronary plaque segmentation on coronary CT angiography
    Javorszky, Natasa
    Homonnay, Balint
    Gerstenblith, Gary
    Bluemke, David
    Kiss, Peter
    Torok, Mihaly
    Celentano, David
    Lai, Hong
    Lai, Shenghan
    Kolossvary, Marton
    EUROPEAN RADIOLOGY, 2022, 32 (10) : 7217 - 7226
  • [25] An iterative approach to efficient deep learning-based CT bone segmentation task
    Prakash, Prakhar
    Gross, Joseph
    Dutta, Sandeep
    MEDICAL IMAGING 2022: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2022, 12036
  • [26] Deep Learning-Based Instance Medullary Pyramid Segmentation in Routine CT Examinations
    Gregory, Adriana
    Moustafa, Amr
    Poudyal, Bhavya
    Denic, Aleksandar
    Rule, Andrew D.
    Kline, Timothy L.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2022, 33 (11): : 547 - 547
  • [27] Deep Learning-based Auto-segmentation on CT and MRI for Abdominal Structures
    Amjad, A.
    Xu, J.
    Thill, D.
    O'Connell, N.
    Buchanan, L.
    Jones, I. K.
    Hall, W. A.
    Erickson, B. A.
    Li, A.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : S100 - S101
  • [28] Automated Deep Learning-based Segmentation of Cardiac PET Images: Addressing Challenges in PET/CT Mismatch and Low Dose CTAC Scans
    Salimi, Y.
    Mansouri, Z.
    Zaidi, H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2024, 51 : S773 - S773
  • [29] PWD-3DNet: A Deep Learning-Based Fully-Automated Segmentation of Multiple Structures on Temporal Bone CT Scans
    Nikon, Soodeh
    Van Osch, Kylen
    Bartling, Mandolin
    Allen, Daniel G.
    Rohani, Alireza
    Connors, Ben
    Agrawal, Sumit K.
    Ladak, Hanif M.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 739 - 753
  • [30] Adversarial deep learning for improved abdominal organ segmentation in CT scans
    Maguluri, Lakshmana Phaneendra
    Chouhan, Kuldeep
    Balamurali, R.
    Rani, R.
    Hashmi, Arshad
    Kiran, Ajmeera
    Rajaram, A.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 82107 - 82129