Accurate and efficient object detection in UAV images is a challenging task due to the diversity of target scales and the massive number of small targets. This study investigates the enhancement in the detection head using sparse convolution, demonstrating its effectiveness in achieving an optimal balance between accuracy and efficiency. Nevertheless, the sparse convolution method encounters challenges related to the inadequate incorporation of global contextual information and exhibits network inflexibility attributable to its fixed mask ratios. To address the above issues, the MFFCESSC-SSD, a novel single-shot detector (SSD) with multi-scale feature fusion and context-enhanced spatial sparse convolution, is proposed in this paper. First, a global context-enhanced group normalization (CE-GN) layer is developed to address the issue of information loss resulting from the convolution process applied exclusively to the masked region. Subsequently, a dynamic masking strategy is designed to determine the optimal mask ratios, thereby ensuring compact foreground coverage that enhances both accuracy and efficiency. Experiments on two datasets (i.e., VisDrone and ARH2000; the latter dataset was created by the researchers) demonstrate that the MFFCESSC-SSD remarkably outperforms the performance of the SSD and numerous conventional object detection algorithms in terms of accuracy and efficiency.