MSFFAL: Few-Shot Object Detection via Multi-Scale Feature Fusion and Attentive Learning

被引:2
|
作者
Zhang, Tianzhao [1 ,2 ]
Sun, Ruoxi [1 ,3 ]
Wan, Yong [4 ]
Zhang, Fuping [1 ]
Wei, Jianming [1 ]
机构
[1] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
[2] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
[3] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[4] Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Wuhan 430071, Peoples R China
基金
中国国家自然科学基金;
关键词
few-shot object detection; few-shot learning; attention mechanism; multi-scale feature fusion;
D O I
10.3390/s23073609
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Few-shot object detection (FSOD) is proposed to solve the application problem of traditional detectors in scenarios lacking training samples. The meta-learning methods have attracted the researchers' attention for their excellent generalization performance. They usually select the same class of support features according to the query labels to weight the query features. However, the model cannot possess the ability of active identification only by using the same category support features, and feature selection causes difficulties in the testing process without labels. The single-scale feature of the model also leads to poor performance in small object detection. In addition, the hard samples in the support branch impact the backbone's representation of the support features, thus impacting the feature weighting process. To overcome these problems, we propose a multi-scale feature fusion and attentive learning (MSFFAL) framework for few-shot object detection. We first design the backbone with multi-scale feature fusion and channel attention mechanism to improve the model's detection accuracy on small objects and the representation of hard support samples. Based on this, we propose an attention loss to replace the feature weighting module. The loss allows the model to consistently represent the objects of the same category in the two branches and realizes the active recognition of the model. The model no longer depends on query labels to select features when testing, optimizing the model testing process. The experiments show that MSFFAL outperforms the state-of-the-art (SOTA) by 0.7-7.8% on the Pascal VOC and exhibits 1.61 times the result of the baseline model in MS COCO's small objects detection.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Multi-scale feature network for few-shot learning
    Mengya Han
    Ronggui Wang
    Juan Yang
    Lixia Xue
    Min Hu
    Multimedia Tools and Applications, 2020, 79 : 11617 - 11637
  • [2] Multi-scale feature network for few-shot learning
    Han, Mengya
    Wang, Ronggui
    Yang, Juan
    Xue, Lixia
    Hu, Min
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (17-18) : 11617 - 11637
  • [3] Few-shot based learning recaptured image detection with multi-scale feature fusion and attention☆
    Hussain, Israr
    Tan, Shunquan
    Huang, Jiwu
    PATTERN RECOGNITION, 2025, 161
  • [4] Multi-Scale Decision Network With Feature Fusion and Weighting for Few-Shot Learning
    Wang, Xiaoru
    Ma, Bing
    Yu, Zhihong
    Li, Fu
    Cai, Yali
    IEEE ACCESS, 2020, 8 : 92172 - 92181
  • [5] Few-shot object detection on Thangka via multi-scale context information
    Hu W.
    Tang H.
    Yue C.
    Song H.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (12): : 1859 - 1869
  • [6] Few-Shot Learning Method for Multi-Scale Feature Aggregation
    Zeng, Wu
    Mao, Guojun
    Computer Engineering and Applications, 2023, 59 (15) : 151 - 159
  • [7] MULTI-SCALE TEMPORAL FEATURE FUSION FOR FEW-SHOT ACTION RECOGNITION
    Lee, Jun-Tae
    Yun, Sungrack
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 1785 - 1789
  • [8] Boosting Few-Shot Learning via Attentive Feature Regularization
    Zhu, Xingyu
    Wang, Shuo
    Lu, Jinda
    Hao, Yanbin
    Liu, Haifeng
    He, Xiangnan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7793 - 7801
  • [9] Few-shot learning approach with multi-scale feature fusion and attention for plant disease recognition
    Lin, Hong
    Tse, Rita
    Tang, Su-Kit
    Qiang, Zhen-ping
    Pau, Giovanni
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] Few-Shot PCB Surface Defect Detection Based on Feature Enhancement and Multi-Scale Fusion
    Wang, Haodong
    Xie, Jun
    Xu, Xinying
    Zheng, Zihao
    IEEE ACCESS, 2022, 10 : 129911 - 129924