A simple Cox approach to estimating risk ratios without sharing individual-level data in multisite studies

被引:1
|
作者
Shu, Di [1 ,2 ]
Zou, Guangyong [3 ,4 ]
Hou, Laura [6 ]
Petrone, Andrew B. [5 ,6 ]
Maro, Judith C. [5 ,6 ]
Fireman, Bruce H. [7 ]
Toh, Sengwee [5 ,6 ]
Connolly, John G. [5 ,6 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Clin Futures, Philadelphia, PA 19146 USA
[3] Western Univ, Schulich Sch Med & Dent, Dept Epidemiol & Biostat, London, ON N6G 2M1, Canada
[4] Western Univ, Robarts Res Inst, London, ON N6A 3K7, Canada
[5] Harvard Med Sch, Dept Populat Med, Boston, MA 02215 USA
[6] Harvard Pilgrim Hlth Care Inst, Boston, MA 02215 USA
[7] Kaiser Permanente Northern Calif, Div Res, Oakland, CA 94612 USA
关键词
Cox proportional hazards model; hazard ratio; modified Poisson regression; multisite studies; privacy protection; risk ratio; ACUTE MYOCARDIAL-INFARCTION; PROPENSITY-SCORE; ODDS RATIOS; REGRESSION APPROACH; STRATIFICATION; SURVEILLANCE; ASSOCIATION; ADJUSTMENT; INFLUENZA; EVENTS;
D O I
10.1093/aje/kwae188
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Epidemiologic studies frequently use risk ratios to quantify associations between exposures and binary outcomes. When the data are physically stored at the sites of multiple data partners, it can be challenging to perform individual-level analysis if data cannot be pooled centrally due to privacy constraints. Existing methods either require multiple file transfers between each data partner and an analysis center (eg, distributed regression) or only provide approximate estimation of the risk ratio (eg, meta-analysis). Here we develop a practical method that requires a single transfer of 8 summary-level quantities from each data partner. Our approach leverages an existing risk-set method and software originally developed for Cox regression. Sharing only summary-level information, the proposed method provides risk ratio estimates and 95% CIs identical to those that would be provided-if individual-level data were pooled-by the modified Poisson regression. We justify the method theoretically, confirm its performance using simulated data, and implement it in a distributed analysis of COVID-19 data from the US Food and Drug Administration's Sentinel System.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Risk Projection for Time-to-Event Outcome Leveraging Summary Statistics With Source Individual-Level Data
    Zheng, Jiayin
    Zheng, Yingye
    Hsu, Li
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (540) : 2043 - 2055
  • [42] Developing a COVID-19 mortality risk prediction model when individual-level data are not available
    Noam Barda
    Dan Riesel
    Amichay Akriv
    Joseph Levy
    Uriah Finkel
    Gal Yona
    Daniel Greenfeld
    Shimon Sheiba
    Jonathan Somer
    Eitan Bachmat
    Guy N. Rothblum
    Uri Shalit
    Doron Netzer
    Ran Balicer
    Noa Dagan
    Nature Communications, 11
  • [43] Accounting for spatial confounding in epidemiological studies with individual-level exposures: An exposure-penalized spline approach
    Bobb, Jennifer F.
    Cruz, Maricela F.
    Mooney, Stephen J.
    Drewnowski, Adam
    Arterburn, David
    Cook, Andrea J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 (03) : 1271 - 1293
  • [44] Body mass index and risk of dementia: Analysis of individual-level data from 1.3 million individuals
    Kivimaki, Mika
    Luukkonen, Ritva
    Batty, G. David
    Ferrie, Jane E.
    Pentti, Jaana
    Nyberg, Solja T.
    Shipley, Martin J.
    Alfredsson, Lars
    Fransson, Eleonor I.
    Goldberg, Marcel
    Knutsson, Anders
    Koskenvuo, Markku
    Kuosma, Eeva
    Nordin, Maria
    Suominen, Sakari B.
    Theorell, Tores
    Vuoksimaa, Eero
    Westerholm, Peter
    Westerlund, Hugo
    Zins, Marie
    Kivipelto, Miia
    Vahtera, Jussi
    Kaprio, Jaakko
    Singh-Manoux, Archana
    Jokela, Markus
    ALZHEIMERS & DEMENTIA, 2018, 14 (05) : 601 - 609
  • [45] Tobacco and alcohol: Complements or substitutes?: A structural model approach to insufficient price variation in individual-level data
    Tauchmann H.
    Lenz S.
    Requate T.
    Schmidt C.M.
    Empirical Economics, 2013, 45 (1) : 539 - 566
  • [46] Developing a COVID-19 mortality risk prediction model when individual-level data are not available
    Barda, Noam
    Riesel, Dan
    Akriv, Amichay
    Levy, Joseph
    Finkel, Uriah
    Yona, Gal
    Greenfeld, Daniel
    Sheiba, Shimon
    Somer, Jonathan
    Bachmat, Eitan
    Rothblum, Guy N.
    Shalit, Uri
    Netzer, Doron
    Balicer, Ran
    Dagan, Noa
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [47] Views of Ethical Best Practices in Sharing Individual-Level Data From Medical and Public Health Research: A Systematic Scoping Review
    Bull, Susan
    Roberts, Nia
    Parker, Michael
    JOURNAL OF EMPIRICAL RESEARCH ON HUMAN RESEARCH ETHICS, 2015, 10 (03) : 225 - 238
  • [48] Best Practices for Ethical Sharing of Individual-Level Health Research Data From Low- and Middle-Income Settings
    Bull, Susan
    Cheah, Phaik Yeong
    Denny, Spencer
    Jao, Irene
    Marsh, Vicki
    Merson, Laura
    More, Neena Shah
    Le Nguyen Thanh Nhan
    Osrin, David
    Tangseefa, Decha
    Wassenaar, Douglas
    Parker, Michael
    JOURNAL OF EMPIRICAL RESEARCH ON HUMAN RESEARCH ETHICS, 2015, 10 (03) : 302 - 313
  • [49] Who Votes Without Identification? Using Individual-Level Administrative Data to Measure the Burden of Strict Voter Identification Laws
    Henninger, Phoebe
    Meredith, Marc
    Morse, Michael
    JOURNAL OF EMPIRICAL LEGAL STUDIES, 2021, 18 (02) : 256 - 286
  • [50] Comparing Methods to Generalize Randomized Clinical Trials without Individual-Level Data for the Real-World Target Population
    Hong, Jin-Liern
    Webster-Clark, Michael
    Funk, Michele Jonsson
    Dempster, Sara
    Sturmer, Til
    Cole, Stephen R.
    LoCasale, Robert
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2017, 26 : 32 - 33