A simple Cox approach to estimating risk ratios without sharing individual-level data in multisite studies

被引:1
|
作者
Shu, Di [1 ,2 ]
Zou, Guangyong [3 ,4 ]
Hou, Laura [6 ]
Petrone, Andrew B. [5 ,6 ]
Maro, Judith C. [5 ,6 ]
Fireman, Bruce H. [7 ]
Toh, Sengwee [5 ,6 ]
Connolly, John G. [5 ,6 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Biostat Epidemiol & Informat, 423 Guardian Dr, Philadelphia, PA 19104 USA
[2] Childrens Hosp Philadelphia, Clin Futures, Philadelphia, PA 19146 USA
[3] Western Univ, Schulich Sch Med & Dent, Dept Epidemiol & Biostat, London, ON N6G 2M1, Canada
[4] Western Univ, Robarts Res Inst, London, ON N6A 3K7, Canada
[5] Harvard Med Sch, Dept Populat Med, Boston, MA 02215 USA
[6] Harvard Pilgrim Hlth Care Inst, Boston, MA 02215 USA
[7] Kaiser Permanente Northern Calif, Div Res, Oakland, CA 94612 USA
关键词
Cox proportional hazards model; hazard ratio; modified Poisson regression; multisite studies; privacy protection; risk ratio; ACUTE MYOCARDIAL-INFARCTION; PROPENSITY-SCORE; ODDS RATIOS; REGRESSION APPROACH; STRATIFICATION; SURVEILLANCE; ASSOCIATION; ADJUSTMENT; INFLUENZA; EVENTS;
D O I
10.1093/aje/kwae188
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Epidemiologic studies frequently use risk ratios to quantify associations between exposures and binary outcomes. When the data are physically stored at the sites of multiple data partners, it can be challenging to perform individual-level analysis if data cannot be pooled centrally due to privacy constraints. Existing methods either require multiple file transfers between each data partner and an analysis center (eg, distributed regression) or only provide approximate estimation of the risk ratio (eg, meta-analysis). Here we develop a practical method that requires a single transfer of 8 summary-level quantities from each data partner. Our approach leverages an existing risk-set method and software originally developed for Cox regression. Sharing only summary-level information, the proposed method provides risk ratio estimates and 95% CIs identical to those that would be provided-if individual-level data were pooled-by the modified Poisson regression. We justify the method theoretically, confirm its performance using simulated data, and implement it in a distributed analysis of COVID-19 data from the US Food and Drug Administration's Sentinel System.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Body Size Indicators and Risk of Gallbladder Cancer: Pooled Analysis of Individual-Level Data from 19 Prospective Cohort Studies
    Campbell, Peter T.
    Newton, Christina C.
    Kitahara, Cari M.
    Patel, Alpa V.
    Hartge, Patricia
    Koshiol, Jill
    McGlynn, Katherine A.
    Adami, Hans-Olov
    de Gonzalez, Amy Berrington
    Freeman, Laura E. Beane
    Bernstein, Leslie
    Buring, Julie E.
    Freedman, Neal D.
    Gao, Yu-Tang
    Giles, Graham G.
    Gunter, Marc J.
    Jenab, Mazda
    Liao, Linda M.
    Milne, Roger L.
    Robien, Kim
    Sandler, Dale P.
    Schairer, Catherine
    Sesso, Howard D.
    Shu, Xiao-Ou
    Weiderpass, Elisabete
    Wolk, Alicja
    Xiang, Yong-Bing
    Zeleniuch-Jacquotte, Anne
    Zheng, Wei
    Gapstur, Susan M.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2017, 26 (04) : 597 - 606
  • [32] Estimating the Impact of Health-related Behaviors on Geographic Variation in Cardiovascular Mortality A New Approach Based on the Synthesis of Ecological and Individual-level Data
    Jonker, Marcel F.
    Donkers, Bas
    Chaix, Basile
    van Lenthe, Frank J.
    Burdorf, A.
    Mackenbach, Johan P.
    EPIDEMIOLOGY, 2015, 26 (06) : 888 - 897
  • [33] Re: Re-centering Exposure-Response Curves Without Access to Individual-Level Data
    Basagana, Xavier
    EPIDEMIOLOGY, 2020, 31 (02) : E18 - E19
  • [34] Estimating Private School Premium for Primary School Children in Ethiopia: Evidence from Individual-level Panel Data
    Eigbiremolen, Godstime Osekhebhen
    PROGRESS IN DEVELOPMENT STUDIES, 2020, 20 (01) : 26 - 44
  • [35] Comparison of Methods to Generalize Randomized Clinical Trial Results Without Individual-Level Data for the Target Population
    Hong, Jin-Liern
    Webster-Clark, Michael
    Funk, Michele Jonsson
    Sturmer, Til
    Dempster, Sara E.
    Cole, Stephen R.
    Herr, Iksha
    LoCasale, Robert
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2019, 188 (02) : 426 - 437
  • [36] Dynamics of Shigellosis Epidemics: Estimating Individual-Level Transmission and Reporting Rates From National Epidemiologic Data Sets
    Joh, Richard I.
    Hoekstra, Robert M.
    Barzilay, Ezra J.
    Bowen, Anna
    Mintz, Eric D.
    Weiss, Howard
    Weitz, Joshua S.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 178 (08) : 1319 - 1326
  • [38] WebDISCO: a web service for distributed cox model learning without patient-level data sharing
    Lu, Chia-Lun
    Wang, Shuang
    Ji, Zhanglong
    Wu, Yuan
    Xiong, Li
    Jiang, Xiaoqian
    Ohno-Machado, Lucila
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2015, 22 (06) : 1212 - 1219
  • [39] Distributed additive hazards regression analysis of multi-site current status data without using individual-level data
    Huang, Peiyao
    Li, Shuwei
    Song, Xinyuan
    STATISTICS AND COMPUTING, 2024, 34 (06)
  • [40] A Machine-Learning Approach for Estimating Subgroup- and Individual-Level Treatment Effects: An Illustration Using the 65 Trial
    Sadique, Zia
    Grieve, Richard
    Diaz-Ordaz, Karla
    Mouncey, Paul
    Lamontagne, Francois
    O'Neill, Stephen
    MEDICAL DECISION MAKING, 2022, 42 (07) : 923 - 936