Some identities related to degenerate Bernoulli and degenerate Euler polynomials

被引:1
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kim, Wonjoo [3 ]
Kwon, Jongkyum [4 ]
机构
[1] Kwangwoon Univ, Math, Seoul, South Korea
[2] Sogang Univ, Math, Seoul, South Korea
[3] Kyung Hee Univ, Math, Seoul, South Korea
[4] Gyeongsang Natl Univ, Math Educ, Jinju, South Korea
关键词
degenerate Bernoulli polynomials; degenerate Euler polynomials; higher-order degenerate Bernoulli polynomials; higher-order degenerate Euler polynomials; NUMBERS;
D O I
10.1080/13873954.2024.2425155
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this paper is to study degenerate Bernoulli and degenerate Euler polynomials and numbers and their higher-order analogues. We express the degenerate Euler polynomials in terms of the degenerate Bernoulli polynomials and vice versa. We prove the distribution formulas for degenerate Bernoulli and degenerate Euler polynomials. We obtain some identities among the higher-order degenerate Bernoulli and higher-order degenerate Euler polynomials. We express the higher-order degenerate Bernoulli polynomials in $x + y$x+y as a linear combination of the degenerate Euler polynomials in $y$y. We get certain identities involving the degenerate $r$r-Stirling numbers of the second and the binomial coefficients.
引用
收藏
页码:882 / 897
页数:16
相关论文
共 50 条
  • [31] Some identities of degenerate special polynomials
    Kim, Dae San
    Kim, Taekyun
    OPEN MATHEMATICS, 2015, 13 : 380 - 389
  • [32] SOME IDENTITIES OF DEGENERATE GENOCCHI POLYNOMIALS
    Lim, Dongkyu
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (02) : 569 - 579
  • [33] Degenerate Fubini-Type Polynomials and Numbers, Degenerate Apostol-Bernoulli Polynomials and Numbers, and Degenerate Apostol-Euler Polynomials and Numbers
    Jin, Siqintuya
    Dagli, Muhammet Cihat
    Qi, Feng
    AXIOMS, 2022, 11 (09)
  • [34] Some Identities for Euler and Bernoulli Polynomials and Their Zeros
    Kim, Taekyun
    Ryoo, Cheon Seoung
    AXIOMS, 2018, 7 (03)
  • [35] On type 2 degenerate Bernoulli and Euler polynomials of complex variable
    Kim, Taekyun
    Kim, Dae San
    Jang, Lee-Chae
    Kim, Han-Young
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
  • [36] On type 2 degenerate Bernoulli and Euler polynomials of complex variable
    Taekyun Kim
    Dae San Kim
    Lee-Chae Jang
    Han-Young Kim
    Advances in Difference Equations, 2019
  • [37] Identities Related to the Bernoulli and the Euler Numbers and Polynomials
    Al, Busra
    Alkan, Mustafa
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [38] DEGENERATE BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH DEGENERATE HERMITE POLYNOMIALS
    Haroon, Hiba
    Khan, Waseem Ahmad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 651 - 669
  • [39] Identities and relations involving the modified degenerate hermite-based Apostol–Bernoulli and Apostol–Euler polynomials
    H. M. Srivastava
    Burak Kurt
    Veli Kurt
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 1299 - 1313
  • [40] Representing polynomials by degenerate Bernoulli polynomials
    Kim, Dae San
    Kim, Taekyun
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 959 - 980