Some identities related to degenerate Bernoulli and degenerate Euler polynomials

被引:1
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kim, Wonjoo [3 ]
Kwon, Jongkyum [4 ]
机构
[1] Kwangwoon Univ, Math, Seoul, South Korea
[2] Sogang Univ, Math, Seoul, South Korea
[3] Kyung Hee Univ, Math, Seoul, South Korea
[4] Gyeongsang Natl Univ, Math Educ, Jinju, South Korea
关键词
degenerate Bernoulli polynomials; degenerate Euler polynomials; higher-order degenerate Bernoulli polynomials; higher-order degenerate Euler polynomials; NUMBERS;
D O I
10.1080/13873954.2024.2425155
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this paper is to study degenerate Bernoulli and degenerate Euler polynomials and numbers and their higher-order analogues. We express the degenerate Euler polynomials in terms of the degenerate Bernoulli polynomials and vice versa. We prove the distribution formulas for degenerate Bernoulli and degenerate Euler polynomials. We obtain some identities among the higher-order degenerate Bernoulli and higher-order degenerate Euler polynomials. We express the higher-order degenerate Bernoulli polynomials in $x + y$x+y as a linear combination of the degenerate Euler polynomials in $y$y. We get certain identities involving the degenerate $r$r-Stirling numbers of the second and the binomial coefficients.
引用
收藏
页码:882 / 897
页数:16
相关论文
共 50 条
  • [21] Some identities related to degenerate r-Bell and degenerate Fubini polynomials
    Kim, Taekyun
    San Kim, Dae
    Kwon, Jongkyum
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [22] Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind
    Taekyun Kim
    Dae San Kim
    Science China(Mathematics), 2019, 62 (05) : 999 - 1028
  • [23] Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind
    Kim, Taekyun
    Kim, Dae San
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (05) : 999 - 1028
  • [24] Some identities for Bernoulli and Euler polynomials
    Wu, KJ
    Sun, ZW
    Pan, H
    FIBONACCI QUARTERLY, 2004, 42 (04): : 295 - 299
  • [25] Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind
    Taekyun Kim
    Dae San Kim
    Science China Mathematics, 2019, 62 : 999 - 1028
  • [26] Degenerate Versions of Hypergeometric Bernoulli-Euler Polynomials
    Cesarano, Clemente
    Quintana, Yamilet
    Ramirez, William
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) : 3509 - 3521
  • [27] Barnes' type multiple degenerate Bernoulli and Euler polynomials
    Kim, Tae Kyun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 258 : 556 - 564
  • [28] A Note on Degenerate Euler and Bernoulli Polynomials of Complex Variable
    Kim, Dae San
    Kim, Taekyun
    Lee, Hyunseok
    SYMMETRY-BASEL, 2019, 11 (09):
  • [29] Some Identities of the Degenerate Multi-Poly-Bernoulli Polynomials of Complex Variable
    Muhiuddin, G.
    Khan, W. A.
    Duran, U.
    Al-Kadi, D.
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [30] Some Identities of Degenerate Bell Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kim, Han Young
    Kwon, Jongkyum
    MATHEMATICS, 2020, 8 (01)