Some identities related to degenerate Bernoulli and degenerate Euler polynomials

被引:1
|
作者
Kim, Taekyun [1 ]
Kim, Dae San [2 ]
Kim, Wonjoo [3 ]
Kwon, Jongkyum [4 ]
机构
[1] Kwangwoon Univ, Math, Seoul, South Korea
[2] Sogang Univ, Math, Seoul, South Korea
[3] Kyung Hee Univ, Math, Seoul, South Korea
[4] Gyeongsang Natl Univ, Math Educ, Jinju, South Korea
关键词
degenerate Bernoulli polynomials; degenerate Euler polynomials; higher-order degenerate Bernoulli polynomials; higher-order degenerate Euler polynomials; NUMBERS;
D O I
10.1080/13873954.2024.2425155
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The aim of this paper is to study degenerate Bernoulli and degenerate Euler polynomials and numbers and their higher-order analogues. We express the degenerate Euler polynomials in terms of the degenerate Bernoulli polynomials and vice versa. We prove the distribution formulas for degenerate Bernoulli and degenerate Euler polynomials. We obtain some identities among the higher-order degenerate Bernoulli and higher-order degenerate Euler polynomials. We express the higher-order degenerate Bernoulli polynomials in $x + y$x+y as a linear combination of the degenerate Euler polynomials in $y$y. We get certain identities involving the degenerate $r$r-Stirling numbers of the second and the binomial coefficients.
引用
收藏
页码:882 / 897
页数:16
相关论文
共 50 条
  • [1] Probabilistic identities involving fully degenerate Bernoulli polynomials and degenerate Euler polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2025, 33 (01):
  • [2] Some Identities on Degenerate Bernstein and Degenerate Euler Polynomials
    Kim, Taekyun
    Kim, Dae San
    MATHEMATICS, 2019, 7 (01):
  • [3] Some combinatorial identities of the degenerate Bernoulli and Euler-Genocchi polynomials
    H. Belbachir
    S. Hadj-Brahim
    Y. Otmani
    M. Rachidi
    Indian Journal of Pure and Applied Mathematics, 2022, 53 : 425 - 442
  • [4] Some combinatorial identities of the degenerate Bernoulli and Euler-Genocchi polynomials
    Belbachir, H.
    Hadj-Brahim, S.
    Otmani, Y.
    Rachidi, M.
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2022, 53 (02): : 425 - 442
  • [5] Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials
    Won Joo Kim
    Dae San Kim
    Han Young Kim
    Taekyun Kim
    Journal of Inequalities and Applications, 2019
  • [6] Some identities of degenerate Euler polynomials associated with degenerate Bernstein polynomials
    Kim, Won Joo
    Kim, Dae San
    Kim, Han Young
    Kim, Taekyun
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [7] Some Identities of Fully Degenerate Bernoulli Polynomials Associated with Degenerate Bernstein Polynomials
    Lee, Jeong Gon
    Kim, Wonjoo
    Jang, Lee-Chae
    SYMMETRY-BASEL, 2019, 11 (05):
  • [8] Some Identities Relating to Degenerate Bernoulli Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    FILOMAT, 2016, 30 (04) : 905 - 912
  • [9] Probabilistic degenerate Bernoulli and degenerate Euler polynomials
    Luo, Lingling
    Kim, Taekyun
    Kim, Dae San
    Ma, Yuankui
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 342 - 363
  • [10] Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
    Dolgy, Dmitry, V
    Kim, Dae San
    Kwon, Jongkyum
    Kim, Taekyun
    SYMMETRY-BASEL, 2019, 11 (07):