Demonstration of Vertically Stacked ZnO/Te Complementary Field-Effect Transistor

被引:0
|
作者
Kim, Kiyung [1 ]
Kim, Minjae [1 ]
Lee, Yongsu [1 ]
Lee, Hae-Won [1 ]
Jun, Jae Hyeon [1 ]
Choi, Jun-Hyeok [1 ]
Yoon, Seongbeen [1 ]
Hwang, Hyeon-Jun [2 ]
Lee, Byoung Hun [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang Si 37673, Gyeongsangbuk D, South Korea
[2] Mokpo Natl Univ, Dept Semicond Engn, Muan Gun 58554, Jeollanam Do, South Korea
来源
ADVANCED ELECTRONIC MATERIALS | 2025年
基金
新加坡国家研究基金会;
关键词
complementary field-effect transistors (CFETs); integration process; logic gate; tellurium (Te); zinc oxide (ZnO); INTEGRATION;
D O I
10.1002/aelm.202500031
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The complementary field-effect transistor (CFET) structure is a highly area-efficient technology. However, their fabrication entails highly complex integration processes using wafer transfer or recrystallization, which has been limiting further development. In this paper, an alternative method is proposed to realize CFETs using p-type tellurium (Te) (for the lower-level channel) and n-type zinc oxide (ZnO) (for the upper-level channel). Te and ZnO are directly deposited on a 30 x 30 mm(2) SiO2/Silicon substrate, using a considerably low-temperature fabrication process (<150 degrees C). The lower p-type channel exhibits superior mobility exceeding 10 cm(2) V-1 s(-1) even after the integration of the entire CFET process. The CFET inverter demonstrates a voltage gain >51 at V-DD = 4 V and noise margins of 0.36 and 0.45 V at V-DD = 1 V. Using the same integration process, functional NAND and NOR logic gates are successfully demonstrated in the vertically integrated CFET structure. The proposed ZnO/Te CFET can be a promising device technology, particularly for 3D and heterojunction integration requiring a low thermal budget.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Influence of stabilizers in ZnO nanodispersions on field-effect transistor device performance
    Bubel, Simon
    Nikolova, Donna
    Mechau, Norman
    Hahn, Horst
    Journal of Applied Physics, 2009, 105 (06):
  • [42] Thin film field-effect transistor with ZnO:Li ferroelectric channel
    Poghosyan, Armen
    Hovsepyan, Ruben
    Mnatsakanyan, Hrachya
    JOURNAL OF ADVANCED DIELECTRICS, 2025, 15 (01)
  • [43] Influence of stabilizers in ZnO nanodispersions on field-effect transistor device performance
    Bubel, Simon
    Nikolova, Donna
    Mechau, Norman
    Hahn, Horst
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
  • [44] Performance Analysis of Vertically Stacked Nanosheet Tunnel Field Effect Transistor with Ideal Subthreshold Swing
    Jain, Garima
    Sawhney, Ravinder Singh
    Kumar, Ravinder
    Saini, Amit
    SILICON, 2022, 14 (09) : 5067 - 5074
  • [45] Vertically Formed Graphene Stripe for 3D Field-Effect Transistor Applications
    Hong, Seul Ki
    Bong, Jae Hoon
    Cho, Byung Jin
    Hwang, Wan Sik
    SMALL, 2017, 13 (03)
  • [46] A COMPLEMENTARY HETEROSTRUCTURE FIELD-EFFECT TRANSISTOR TECHNOLOGY BASED ON INAS/ALSB/GASB
    LONGENBACH, KF
    BERESFORD, R
    WANG, WI
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (10) : 2265 - 2267
  • [47] Performance Analysis of Vertically Stacked Nanosheet Tunnel Field Effect Transistor with Ideal Subthreshold Swing
    Garima Jain
    Ravinder Singh Sawhney
    Ravinder Kumar
    Amit Saini
    Silicon, 2022, 14 : 5067 - 5074
  • [48] ON FIELD-EFFECT TRANSISTOR CHARACTERISTICS
    WEDLOCK, BD
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1968, ED15 (03) : 181 - &
  • [49] THE FIELD-EFFECT TRANSISTOR - A REVIEW
    WALLMARK, JT
    RCA REVIEW, 1963, 24 (04): : 641 - 660
  • [50] FIELD-EFFECT TRANSISTOR CHARACTERIZATION
    ROIZES, A
    DAVID, JP
    RECHERCHE AEROSPATIALE, 1990, (02): : 17 - 29