Demonstration of Vertically Stacked ZnO/Te Complementary Field-Effect Transistor

被引:0
|
作者
Kim, Kiyung [1 ]
Kim, Minjae [1 ]
Lee, Yongsu [1 ]
Lee, Hae-Won [1 ]
Jun, Jae Hyeon [1 ]
Choi, Jun-Hyeok [1 ]
Yoon, Seongbeen [1 ]
Hwang, Hyeon-Jun [2 ]
Lee, Byoung Hun [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang Si 37673, Gyeongsangbuk D, South Korea
[2] Mokpo Natl Univ, Dept Semicond Engn, Muan Gun 58554, Jeollanam Do, South Korea
基金
新加坡国家研究基金会;
关键词
complementary field-effect transistors (CFETs); integration process; logic gate; tellurium (Te); zinc oxide (ZnO); INTEGRATION;
D O I
10.1002/aelm.202500031
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The complementary field-effect transistor (CFET) structure is a highly area-efficient technology. However, their fabrication entails highly complex integration processes using wafer transfer or recrystallization, which has been limiting further development. In this paper, an alternative method is proposed to realize CFETs using p-type tellurium (Te) (for the lower-level channel) and n-type zinc oxide (ZnO) (for the upper-level channel). Te and ZnO are directly deposited on a 30 x 30 mm(2) SiO2/Silicon substrate, using a considerably low-temperature fabrication process (<150 degrees C). The lower p-type channel exhibits superior mobility exceeding 10 cm(2) V-1 s(-1) even after the integration of the entire CFET process. The CFET inverter demonstrates a voltage gain >51 at V-DD = 4 V and noise margins of 0.36 and 0.45 V at V-DD = 1 V. Using the same integration process, functional NAND and NOR logic gates are successfully demonstrated in the vertically integrated CFET structure. The proposed ZnO/Te CFET can be a promising device technology, particularly for 3D and heterojunction integration requiring a low thermal budget.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] FIELD-EFFECT TRANSISTOR
    GULDENPFENNIG, P
    ELEKTROTECHNISCHE ZEITSCHRIFT B-AUSGABE, 1968, 20 (17): : 474 - +
  • [32] Optimal Design and Performance Analysis of Vertically Stacked Nanosheet Tunnel Field Effect Transistor
    S. Anthoniraj
    K. Saravanan
    A. S. Vinay Raj
    N. A. Vignesh
    Silicon, 2022, 14 : 11121 - 11129
  • [33] Optimal Design and Performance Analysis of Vertically Stacked Nanosheet Tunnel Field Effect Transistor
    Anthoniraj, S.
    Saravanan, K.
    Raj, A. S. Vinay
    Vignesh, N. A.
    SILICON, 2022, 14 (17) : 11121 - 11129
  • [34] Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor
    Mao, Shun
    Yu, Kehan
    Chang, Jingbo
    Steeber, Douglas A.
    Ocola, Leonidas E.
    Chen, Junhong
    SCIENTIFIC REPORTS, 2013, 3
  • [35] Direct Growth of Vertically-oriented Graphene for Field-Effect Transistor Biosensor
    Shun Mao
    Kehan Yu
    Jingbo Chang
    Douglas A. Steeber
    Leonidas E. Ocola
    Junhong Chen
    Scientific Reports, 3
  • [36] DEMONSTRATION OF A SILICON FIELD-EFFECT TRANSISTOR USING AIN AS THE GATE DIELECTRIC
    STEVENS, KS
    KINNIBURGH, M
    SCHWARTZMAN, AF
    OHTANI, A
    BERESFORD, R
    APPLIED PHYSICS LETTERS, 1995, 66 (23) : 3179 - 3181
  • [37] Demonstration of a silicon field-effect transistor using AIN as the gate dielectric
    1600, American Inst of Physics, Woodbury, NY, USA (66):
  • [38] Demonstration of Fin-Tunnel Field-Effect Transistor with Elevated Drain
    Kim, Jang Hyun
    Kim, Hyun Woo
    Kim, Garam
    Kim, Sangwan
    Park, Byung-Gook
    MICROMACHINES, 2019, 10 (01)
  • [39] Transverse piezoelectric field-effect transistor based on single ZnO nanobelts
    Yang, Ya
    Qi, Junjie
    Guo, Wen
    Gu, Yousong
    Huang, Yunhua
    Zhang, Yue
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (39) : 12415 - 12419
  • [40] Lateral piezopotential-gated field-effect transistor of ZnO nanowires
    Xu, Zhi
    Zhang, Chao
    Wang, Wenlong
    Bando, Yoshio
    Bai, Xuedong
    Golberg, Dmitri
    NANO ENERGY, 2015, 13 : 233 - 239