Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement

被引:0
|
作者
Kang, Sicong [1 ,2 ]
Gao, Shuaibo [1 ,2 ]
Wu, Wenhui [1 ,2 ]
Wang, Xu [3 ]
Wang, Shuoyao [1 ]
Qiu, Guoping [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Image restoration; Reflectivity; Diffusion models; Feature extraction; Image color analysis; Image enhancement; Low-light image enhancement; diffusion model; retinex decomposition; RETINEX;
D O I
10.1109/TCSVT.2024.3441713
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Through formulating the image restoration as a generation problem, the conditional diffusion model has been applied to low-light image enhancement (LIE) to restore the details in dark regions. However, in the previous diffusion model based LIE methods, the conditions used for guiding generation are degraded images, such as low-light image, signal-to-noise ratio map and color map, which suffer from severe degradation and are simply fed into diffusion model by rigidly concatenating with the noise. To avoid using degraded conditions resulting in sub-optimal performance in recovering details and enhancing brightness, we use the image intrinsic components originating from the Retinex model as guidance, whose multi-scale features are flexibly integrated into the diffusion model, and propose a novel conditional diffusion model for LIE. Specifically, the input low-light image is decomposed into reflectance and illumination by a Retinex decomposition module, where two components contain abundant physical property and lighting conditions of the scene. Then, we extract the latent features from two conditions through a component-dependent feature extraction module, which is designed according to the physical property of components. Finally, instead of previous rigid concatenation manner, a well-designed feature fusion mechanism is equipped to adaptively embed generative conditions into diffusion model. Extensive experimental results demonstrate that our method outperforms the state-of-the-art methods, and is capable of effectively restoring the local details while brightening the dark regions. Our codes are available at https://github.com/Knossosc/ICCDiff.
引用
收藏
页码:13244 / 13256
页数:13
相关论文
共 50 条
  • [31] Low-Light Image Enhancement via the Absorption Light Scattering Model
    Wang, Yun-Fei
    Liu, He-Ming
    Fu, Zhao-Wang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (11) : 5679 - 5690
  • [32] A Variational Model for Nonuniform Low-Light Image Enhancement\ast
    Jia, Fan
    Mao, Shen
    Tai, Xue-Cheng
    Zeng, Tieyong
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01): : 1 - 30
  • [33] Variational low-light image enhancement based on a haze model
    Shin J.
    Park H.
    Park J.
    Ha J.
    Paik J.
    IEIE Transactions on Smart Processing and Computing, 2018, 7 (04): : 325 - 331
  • [34] Low-Light Image Enhancement Using the Cell Vibration Model
    Lei, Xiaozhou
    Fei, Zixiang
    Zhou, Wenju
    Zhou, Huiyu
    Fei, Minrui
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4439 - 4454
  • [35] Low-light image enhancement via an attention-guided deep Retinex decomposition model
    Luo, Yu
    Lv, Guoliang
    Ling, Jie
    Hu, Xiaomin
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [36] Low-light image enhancement based on variational image decomposition
    Su, Yonggang
    Yang, Xuejie
    MULTIMEDIA SYSTEMS, 2024, 30 (06)
  • [37] Low-light image enhancement for infrared and visible image fusion
    Zhou, Yiqiao
    Xie, Lisiqi
    He, Kangjian
    Xu, Dan
    Tao, Dapeng
    Lin, Xu
    IET IMAGE PROCESSING, 2023, 17 (11) : 3216 - 3234
  • [38] Low-Light Image Enhancement Based on RAW Domain Image
    Chen L.
    Zhang Y.
    Lyu Z.
    Ding D.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (02): : 303 - 311
  • [39] Better Than Reference in Low-Light Image Enhancement: Conditional Re-Enhancement Network
    Zhang, Yu
    Di, Xiaoguang
    Zhang, Bin
    Ji, Ruihang
    Wang, Chunhui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 759 - 772
  • [40] Benchmarking Low-Light Image Enhancement and Beyond
    Liu, Jiaying
    Xu, Dejia
    Yang, Wenhan
    Fan, Minhao
    Huang, Haofeng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2021, 129 (04) : 1153 - 1184