Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement

被引:0
|
作者
Kang, Sicong [1 ,2 ]
Gao, Shuaibo [1 ,2 ]
Wu, Wenhui [1 ,2 ]
Wang, Xu [3 ]
Wang, Shuoyao [1 ]
Qiu, Guoping [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Image restoration; Reflectivity; Diffusion models; Feature extraction; Image color analysis; Image enhancement; Low-light image enhancement; diffusion model; retinex decomposition; RETINEX;
D O I
10.1109/TCSVT.2024.3441713
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Through formulating the image restoration as a generation problem, the conditional diffusion model has been applied to low-light image enhancement (LIE) to restore the details in dark regions. However, in the previous diffusion model based LIE methods, the conditions used for guiding generation are degraded images, such as low-light image, signal-to-noise ratio map and color map, which suffer from severe degradation and are simply fed into diffusion model by rigidly concatenating with the noise. To avoid using degraded conditions resulting in sub-optimal performance in recovering details and enhancing brightness, we use the image intrinsic components originating from the Retinex model as guidance, whose multi-scale features are flexibly integrated into the diffusion model, and propose a novel conditional diffusion model for LIE. Specifically, the input low-light image is decomposed into reflectance and illumination by a Retinex decomposition module, where two components contain abundant physical property and lighting conditions of the scene. Then, we extract the latent features from two conditions through a component-dependent feature extraction module, which is designed according to the physical property of components. Finally, instead of previous rigid concatenation manner, a well-designed feature fusion mechanism is equipped to adaptively embed generative conditions into diffusion model. Extensive experimental results demonstrate that our method outperforms the state-of-the-art methods, and is capable of effectively restoring the local details while brightening the dark regions. Our codes are available at https://github.com/Knossosc/ICCDiff.
引用
收藏
页码:13244 / 13256
页数:13
相关论文
共 50 条
  • [21] Low-Light Hyperspectral Image Enhancement
    Li, Xuelong
    Li, Guanlin
    Zhao, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [22] Decoupled Low-Light Image Enhancement
    Hao, Shijie
    Han, Xu
    Guo, Yanrong
    Wang, Meng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2022, 18 (04)
  • [23] MULTI-SCALE FEATURE GUIDED LOW-LIGHT IMAGE ENHANCEMENT
    Guo, Lanqing
    Wan, Renjie
    Su, Guan-Ming
    Kot, Alex C.
    Wen, Bihan
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 554 - 558
  • [24] Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model
    Yi, Xunpeng
    Xu, Han
    Zhang, Hao
    Tang, Linfeng
    Ma, Jiayi
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12268 - 12277
  • [25] Noise Map Guided Inpainting Network for Low-Light Image Enhancement
    Jiang, Zhuolong
    Shen, Chengzhi
    Li, Chenghua
    Liu, Hongzhi
    Chen, Wei
    PATTERN RECOGNITION AND COMPUTER VISION,, PT III, 2021, 13021 : 201 - 213
  • [26] Cartoon-texture guided network for low-light image enhancement
    Shi, Baoshun
    Zhu, Chunzi
    Li, Lingyan
    Huang, Huagui
    DIGITAL SIGNAL PROCESSING, 2024, 144
  • [27] Illumination Guided Attentive Wavelet Network for Low-Light Image Enhancement
    Xu, Jingzhao
    Yuan, Mengke
    Yan, Dong-Ming
    Wu, Tieru
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6258 - 6271
  • [28] Low-light Image Enhancement Based on Weighted Adaptive Guided Filter
    Zeng, Ruoyun
    Fang, Hongping
    Wu, Shiqian
    Wu, Jiaxin
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 113 - 117
  • [29] Low-Light Image Enhancement with Wavelet-based Diffusion Models
    Jiang, Hai
    Luo, Ao
    Fan, Haoqiang
    Han, Songchen
    Liu, Shuaicheng
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (06):
  • [30] Denoising diffusion post-processing for low-light image enhancement
    Panagiotou, Savvas
    Bosman, Anna S.
    PATTERN RECOGNITION, 2024, 156