Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement

被引:0
|
作者
Kang, Sicong [1 ,2 ]
Gao, Shuaibo [1 ,2 ]
Wu, Wenhui [1 ,2 ]
Wang, Xu [3 ]
Wang, Shuoyao [1 ]
Qiu, Guoping [1 ,2 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen 518060, Peoples R China
[2] Guangdong Prov Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Lighting; Image restoration; Reflectivity; Diffusion models; Feature extraction; Image color analysis; Image enhancement; Low-light image enhancement; diffusion model; retinex decomposition; RETINEX;
D O I
10.1109/TCSVT.2024.3441713
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Through formulating the image restoration as a generation problem, the conditional diffusion model has been applied to low-light image enhancement (LIE) to restore the details in dark regions. However, in the previous diffusion model based LIE methods, the conditions used for guiding generation are degraded images, such as low-light image, signal-to-noise ratio map and color map, which suffer from severe degradation and are simply fed into diffusion model by rigidly concatenating with the noise. To avoid using degraded conditions resulting in sub-optimal performance in recovering details and enhancing brightness, we use the image intrinsic components originating from the Retinex model as guidance, whose multi-scale features are flexibly integrated into the diffusion model, and propose a novel conditional diffusion model for LIE. Specifically, the input low-light image is decomposed into reflectance and illumination by a Retinex decomposition module, where two components contain abundant physical property and lighting conditions of the scene. Then, we extract the latent features from two conditions through a component-dependent feature extraction module, which is designed according to the physical property of components. Finally, instead of previous rigid concatenation manner, a well-designed feature fusion mechanism is equipped to adaptively embed generative conditions into diffusion model. Extensive experimental results demonstrate that our method outperforms the state-of-the-art methods, and is capable of effectively restoring the local details while brightening the dark regions. Our codes are available at https://github.com/Knossosc/ICCDiff.
引用
收藏
页码:13244 / 13256
页数:13
相关论文
共 50 条
  • [1] DLDiff: Image Detail-Guided Latent Diffusion Model for Low-Light Image Enhancement
    Xue, Minglong
    He, Yanyi
    He, Jinhong
    Zhong, Senming
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2255 - 2259
  • [2] PSC diffusion: patch-based simplified conditional diffusion model for low-light image enhancement
    Wan, Fei
    Xu, Bingxin
    Pan, Weiguo
    Liu, Hongzhe
    MULTIMEDIA SYSTEMS, 2024, 30 (04)
  • [3] Task Decoupling Guided Low-Light Image Enhancement
    Niu Y.-Z.
    Chen M.-M.
    Li Y.-Z.
    Zhao T.-S.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (01): : 34 - 45
  • [4] Hierarchical guided network for low-light image enhancement
    Feng, Xiaomei
    Li, Jinjiang
    Fan, Hui
    IET IMAGE PROCESSING, 2021, 15 (13) : 3254 - 3266
  • [5] Exemplar-guided low-light image enhancement
    Yangming Shi
    Xiaopo Wu
    Binquan Wang
    Ming Zhu
    Multimedia Systems, 2022, 28 : 1861 - 1871
  • [6] Semantically-guided low-light image enhancement
    Xie, Junyi
    Bian, Hao
    Wu, Yuanhang
    Zhao, Yu
    Shan, Linmin
    Hao, Shijie
    PATTERN RECOGNITION LETTERS, 2020, 138 : 308 - 314
  • [7] Exemplar-guided low-light image enhancement
    Shi, Yangming
    Wu, Xiaopo
    Wang, Binquan
    Zhu, Ming
    MULTIMEDIA SYSTEMS, 2022, 28 (05) : 1861 - 1871
  • [8] Low-light image enhancement by diffusion pyramid with residuals
    Kim, Wonjun
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 81
  • [9] Pyramid Diffusion Models for Low-light Image Enhancement
    Zhou, Dewei
    Yang, Zongxin
    Yang, Yi
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 1795 - 1803
  • [10] Multi-Feature Guided Low-Light Image Enhancement
    Liang, Hong
    Yu, Ankang
    Shao, Mingwen
    Tian, Yuru
    APPLIED SCIENCES-BASEL, 2021, 11 (11):