Quantum metrology using quantum combs and tensor network formalism

被引:1
|
作者
Kurdzialek, Stanislaw [1 ]
Dulian, Piotr [1 ,2 ]
Majsak, Joanna [1 ,3 ]
Chakraborty, Sagnik [1 ,4 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[4] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor, Madrid 28040, Spain
来源
NEW JOURNAL OF PHYSICS | 2025年 / 27卷 / 01期
关键词
quantum metrology; quantum Fisher information; quantum combs; quantum processes; tensor networks; correlated noise; HEISENBERG LIMIT; STATES; NOISE;
D O I
10.1088/1367-2630/ada8d1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an efficient algorithm for determining optimal adaptive quantum estimation protocols with arbitrary quantum control operations between subsequent uses of a probed channel.We introduce a tensor network representation of an estimation strategy, which drastically reduces the time and memory consumption of the algorithm, and allows us to analyze metrological protocols involving up to N = 50 qubit channel uses, whereas the state-of-the-art approaches are limited to N < 5. The method is applied to study the performance of the optimal adaptive metrological protocols in presence of various noise types, including correlated noise.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Achieving the Heisenberg limit in quantum metrology using quantum error correction
    Zhou, Sisi
    Zhang, Mengzhen
    Preskill, John
    Jiang, Liang
    NATURE COMMUNICATIONS, 2018, 9
  • [22] Achieving the Heisenberg limit in quantum metrology using quantum error correction
    Sisi Zhou
    Mengzhen Zhang
    John Preskill
    Liang Jiang
    Nature Communications, 9
  • [23] Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network
    Finkelstein, Joshua
    Rubensson, Emanuel H.
    Mniszewski, Susan M.
    Negre, Christian F. A.
    Niklasson, Anders M. N.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 4255 - 4268
  • [24] Quantum metrology for relativistic quantum fields
    Ahmadi, Mehdi
    Bruschi, David Edward
    Fuentes, Ivette
    PHYSICAL REVIEW D, 2014, 89 (06)
  • [25] Quantum measurement encoding for quantum metrology
    Yang, Jing
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [26] Quantum jump metrology in a two-cavity network
    Al Rasbi, Kawthar
    Beige, Almut
    Clark, Lewis A.
    PHYSICAL REVIEW A, 2022, 106 (06)
  • [27] Quantum Metrology in the Presence of Quantum Oscillations
    Seyed Mohammad Hosseiny
    Jamileh Seyed-Yazdi
    Milad Norouzi
    Fatemeh Irannezhad
    International Journal of Theoretical Physics, 63
  • [28] Quantum Metrology in the Presence of Quantum Oscillations
    Hosseiny, Seyed Mohammad
    Seyed-Yazdi, Jamileh
    Norouzi, Milad
    Irannezhad, Fatemeh
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (03)
  • [29] QUANTUM METROLOGY WITHOUT QUANTUM ENTANGLEMENT
    Datta, Animesh
    Shaji, Anil
    MODERN PHYSICS LETTERS B, 2012, 26 (18):
  • [30] Interpreting quantum discord in quantum metrology
    Girolami, Davide
    7TH INTERNATIONAL WORKSHOP DICE2014 SPACETIME - MATTER - QUANTUM MECHANICS, 2015, 626