Quantum Perturbation Theory Using Tensor Cores and a Deep Neural Network

被引:10
|
作者
Finkelstein, Joshua [2 ]
Rubensson, Emanuel H. [3 ]
Mniszewski, Susan M. [1 ]
Negre, Christian F. A. [2 ]
Niklasson, Anders M. N. [2 ]
机构
[1] Los Alamos Natl Lab, Comp Computat & Stat Sci Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Uppsala Univ, Div Comp Sci, Dept Informat Technol, SE-75105 Uppsala, Sweden
关键词
GRAPHICAL PROCESSING UNITS; ELECTRONIC-STRUCTURE CALCULATIONS; TIGHT-BINDING METHOD; DENSITY-MATRIX; HARTREE-FOCK; CHEMISTRY; FACTORIZATION; CONSTRUCTION; POLARIZATION; SIMULATIONS;
D O I
10.1021/acs.jctc.2c00274
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Time-independent quantum response calculations are performed using Tensor cores. This is achieved by mapping density matrix perturbation theory onto the computational structure of a deep neural network. The main computational cost of each deep layer is dominated by tensor contractions, i.e., dense matrix-matrix multiplications, in mixed-precision arithmetics, which achieves close to peak performance. Quantum response calculations are demonstrated and analyzed using self-consistent charge density-functional tight-binding theory as well as coupled-perturbed Hartree-Fock theory. For linear response calculations, a novel parameter-free convergence criterion is presented that is well-suited for numerically noisy low-precision floating point operations and we demonstrate a peak performance of almost 200 Tflops using the Tensor cores of two Nvidia A100 GPUs.
引用
收藏
页码:4255 / 4268
页数:14
相关论文
共 50 条
  • [1] Accelerating Sparse Deep Neural Network Inference Using GPU Tensor Cores
    Sun, Yufei
    Zheng, Long
    Wang, Qinggang
    Ye, Xiangyu
    Huang, Yu
    Yao, Pengcheng
    Liao, Xiaofei
    Jin, Hai
    2022 IEEE HIGH PERFORMANCE EXTREME COMPUTING VIRTUAL CONFERENCE (HPEC), 2022,
  • [2] Visualizing a neural network that develops quantum perturbation theory
    Wu Y.
    Zhang P.
    Shen H.
    Zhai H.
    2018, American Physical Society (98)
  • [3] Visualizing a neural network that develops quantum perturbation theory
    Wu, Yadong
    Zhang, Pengfei
    Shen, Huitao
    Zhai, Hui
    PHYSICAL REVIEW A, 2018, 98 (01)
  • [4] QUANTUM CORRECTIONS TO STRESS TENSOR IN PERTURBATION-THEORY
    YAMADA, K
    PHYSICAL REVIEW D, 1974, 10 (02): : 599 - 613
  • [5] Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network
    Khamparia, Aditya
    Gupta, Deepak
    Nhu Gia Nguyen
    Khanna, Ashish
    Pandey, Babita
    Tiwari, Prayag
    IEEE ACCESS, 2019, 7 : 7717 - 7727
  • [6] Accelerated cardiac diffusion tensor imaging using deep neural network
    Liu, Shaonan
    Liu, Yuanyuan
    Xu, Xi
    Chen, Rui
    Liang, Dong
    Jin, Qiyu
    Liu, Hui
    Chen, Guoqing
    Zhu, Yanjie
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (02):
  • [7] Interaction energy prediction of organic molecules using deep tensor neural network
    Qi, Yuan
    Ren, Hong
    Li, Hong
    Zhang, Ding-lin
    Cui, Hong-qiang
    Weng, Jun-ben
    Li, Guo-hui
    Wang, Gui-yan
    Li, Yan
    CHINESE JOURNAL OF CHEMICAL PHYSICS, 2021, 34 (01) : 112 - 124
  • [8] Optimization of Regenerator Placement in Optical Networks Using Deep Tensor Neural Network
    Aibin, Michal
    Cheng, Stephen
    Xiao, David
    Huang, Aldrich
    2020 11TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2020, : 218 - 225
  • [9] Using a Deep Quantum Neural Network to Enhance the Fidelity of Quantum Convolutional Codes
    Xiao, Hanwei
    Chen, Xiaoguang
    Xu, Jin
    APPLIED SCIENCES-BASEL, 2022, 12 (11):
  • [10] Neural tensor contractions and the expressive power of deep neural quantum states
    Sharir, Or
    Shashua, Amnon
    Carleo, Giuseppe
    PHYSICAL REVIEW B, 2022, 106 (20)