Accelerated cardiac diffusion tensor imaging using deep neural network

被引:4
|
作者
Liu, Shaonan [1 ,2 ]
Liu, Yuanyuan [1 ]
Xu, Xi [1 ]
Chen, Rui [3 ]
Liang, Dong [1 ]
Jin, Qiyu [4 ]
Liu, Hui [3 ]
Chen, Guoqing [4 ]
Zhu, Yanjie [1 ,5 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Paul C Lauterbur Res Ctr Biomed Imaging, Shenzhen, Guangdong, Peoples R China
[2] Inner Mongolia Univ, Dept Comp Sci, Hohhot, Peoples R China
[3] Guangdong Prov Peoples Hosp Guangdong Acad Med Sci, Dept Radiol, Guangzhou, Peoples R China
[4] Inner Mongolia Univ, Dept Math Sci, Hohhot, Peoples R China
[5] Natl Ctr Appl Math Shenzhen, Shenzhen, Guangdong, Peoples R China
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2023年 / 68卷 / 02期
基金
国家重点研发计划; 中国国家自然科学基金; 中国博士后科学基金;
关键词
deep learning; cardiac diffusion tensor imaging (DTI); convolutional neural network; NOISE;
D O I
10.1088/1361-6560/acaa86
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Cardiac diffusion tensor imaging (DTI) is a noninvasive method for measuring the microstructure of the myocardium. However, its long scan time significantly hinders its wide application. In this study, we developed a deep learning framework to obtain high-quality DTI parameter maps from six diffusion-weighted images (DWIs) by combining deep-learning-based image generation and tensor fitting, and named the new framework FG-Net. In contrast to frameworks explored in previous deep-learning-based fast DTI studies, FG-Net generates inter-directional DWIs from six input DWIs to supplement the loss information and improve estimation accuracy for DTI parameters. FG-Net was evaluated using two datasets of ex vivo human hearts. The results showed that FG-Net can generate fractional anisotropy, mean diffusivity maps, and helix angle maps from only six raw DWIs, with a quantification error of less than 5%. FG-Net outperformed conventional tensor fitting and black-box network fitting in both qualitative and quantitative metrics. We also demonstrated that the proposed FG-Net can achieve highly accurate fractional anisotropy and helix angle maps in DWIs with different b-values.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Accelerated Human Cardiac Diffusion Tensor Imaging Using Simultaneous Multislice Imaging
    Lau, Angus Z.
    Tunnicliffe, Elizabeth M.
    Frost, Robert
    Koopmans, Peter J.
    Tyler, Damian J.
    Robson, Matthew D.
    MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (03) : 995 - 1004
  • [2] Highly Accelerated Diffusion Tensor MRI Using an Artificial Neural Network
    Aliotta, E.
    Nourzadeh, H.
    Moulin, K.
    Ennis, D.
    MEDICAL PHYSICS, 2018, 45 (06) : E584 - E584
  • [3] Conditional generative diffusion deep learning for accelerated diffusion tensor and kurtosis imaging
    Martin, Phillip
    Altbach, Maria
    Bilgin, Ali
    MAGNETIC RESONANCE IMAGING, 2025, 117
  • [4] Cardiac diffusion tensor imaging simulation based on deep convolutional generative adversarial network
    Liu, Bin
    Wang, Lihui
    Zhang, Jian
    Cheng, Xinyu
    Yang, Feng
    Huang, Jianping
    Zhu, Yuemin
    PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 1189 - 1193
  • [5] Accelerated Cardiac Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints
    Ma, Sen
    Nguyen, Christopher T.
    Christodoulou, Anthony G.
    Luthringer, Daniel
    Kobashigawa, Jon
    Lee, Sang-Eun
    Chang, Hyuk-Jae
    Li, Debiao
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (10) : 2219 - 2230
  • [6] Accelerated MR Diffusion Tensor Imaging Using Distributed Compressed Sensing
    Wu, Yin
    Zhu, Yan-Jie
    Tang, Qiu-Yang
    Zou, Chao
    Liu, Wei
    Dai, Rui-Bin
    Liu, Xin
    Wu, Ed X.
    Ying, Leslie
    Liang, Dong
    MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) : 763 - 772
  • [8] Neural fingerprints of gambling disorder using diffusion tensor imaging
    Schmidt, Casper
    Gleesborg, Carsten
    Schmidt, Hema
    Kvamme, Timo L.
    Voon, Valerie
    Moller, Arne
    PSYCHIATRY RESEARCH-NEUROIMAGING, 2023, 333
  • [9] Clinical evaluation of accelerated diffusion-weighted imaging of rectal cancer using a denoising neural network
    Petkovska, Iva
    Alus, Or
    Rodriguez, Lee
    El Homsi, Maria
    Pernicka, Jennifer S. Golia
    Fernandes, Maria Clara
    Zheng, Junting
    Capanu, Marinela
    Otazo, Ricardo
    EUROPEAN JOURNAL OF RADIOLOGY, 2024, 181
  • [10] Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network
    Khamparia, Aditya
    Gupta, Deepak
    Nhu Gia Nguyen
    Khanna, Ashish
    Pandey, Babita
    Tiwari, Prayag
    IEEE ACCESS, 2019, 7 : 7717 - 7727