HPOD: Hyperparameter Optimization for Unsupervised Outlier Detection

被引:0
|
作者
Zhao, Yue [1 ]
Akoglu, Leman [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without using any labels? In this work, we address this challenging hyperparameter optimization for unsupervised OD problem, and propose the first continuous HP search method called HPOD. It capitalizes on the prior performance of a large collection of HPs on existing OD benchmark datasets, and transfers this information to enable HP evaluation on a new dataset without labels. Also, HPOD adapts a prominent, (originally) supervised, sampling paradigm to efficiently identify promising HPs in iterations. Extensive experiments show that HPOD works for both deep (e.g., Robust AutoEncoder (RAE)) and shallow (e.g., Local Outlier Factor (LOF) and Isolation Forest (iForest)) algorithms on discrete and continuous HP spaces. HPOD outperforms a wide range of diverse baselines with 37% improvement on average over the minimal loss HPs of RAE, and 58% and 66% improvement on average over the default HPs of LOF and iForest.
引用
收藏
页数:24
相关论文
共 50 条
  • [31] Rethinking Unsupervised Outlier Detection via Multiple Thresholding
    Liu, Zhonghang
    Lu, Panzhong
    Xie, Guoyang
    Lu, Zhichao
    Lin, Wen-Yan
    COMPUTER VISION-ECCV 2024, PT XVIII, 2025, 15076 : 258 - 275
  • [32] Subsampling for Efficient and Effective Unsupervised Outlier Detection Ensembles
    Zimek, Arthur
    Gaudet, Matthew
    Campello, Ricardo J. G. B.
    Sander, Jorg
    19TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'13), 2013, : 428 - 436
  • [33] Automatic Hyperparameter Tuning Method for Local Outlier Factor, with Applications to Anomaly Detection
    Xu, Zekun
    Kakde, Deovrat
    Chaudhuri, Arin
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 4201 - 4207
  • [34] Time Series Analysis: Unsupervised Anomaly Detection Beyond Outlier Detection
    Landauer, Max
    Wurzenberger, Markus
    Skopik, Florian
    Settanni, Giuseppe
    Filzmoser, Peter
    INFORMATION SECURITY PRACTICE AND EXPERIENCE (ISPEC 2018), 2018, 11125 : 19 - 36
  • [35] XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning
    Zhao, Yue
    Hryniewicki, Maciej K.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018, : 558 - 565
  • [36] On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study
    Guilherme O. Campos
    Arthur Zimek
    Jörg Sander
    Ricardo J. G. B. Campello
    Barbora Micenková
    Erich Schubert
    Ira Assent
    Michael E. Houle
    Data Mining and Knowledge Discovery, 2016, 30 : 891 - 927
  • [37] Unsupervised Outlier Detection in Appearance-Based Gaze Estimation
    Chen, Zhaokang
    Deng, Didan
    Pi, Jimin
    Shi, Bertram E.
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 1088 - 1097
  • [38] Unsupervised Universal Steganalysis Combining Image Retrieval and Outlier Detection
    Xu, Chen
    Zhang, Tao
    Hou, Xiaodan
    2016 IEEE INFORMATION TECHNOLOGY, NETWORKING, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (ITNEC), 2016, : 1047 - 1050
  • [39] Unsupervised approach for online outlier detection in industrial process data
    Bechny, Michal
    Himmelbauer, Johannes
    3RD INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, 2022, 200 : 257 - 266
  • [40] Unsupervised clustering of mammograms for outlier detection and breast density estimation
    Tlusty, Tal
    Amit, Guy
    Ben-Ari, Rami
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 3808 - 3813