HPOD: Hyperparameter Optimization for Unsupervised Outlier Detection

被引:0
|
作者
Zhao, Yue [1 ]
Akoglu, Leman [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without using any labels? In this work, we address this challenging hyperparameter optimization for unsupervised OD problem, and propose the first continuous HP search method called HPOD. It capitalizes on the prior performance of a large collection of HPs on existing OD benchmark datasets, and transfers this information to enable HP evaluation on a new dataset without labels. Also, HPOD adapts a prominent, (originally) supervised, sampling paradigm to efficiently identify promising HPs in iterations. Extensive experiments show that HPOD works for both deep (e.g., Robust AutoEncoder (RAE)) and shallow (e.g., Local Outlier Factor (LOF) and Isolation Forest (iForest)) algorithms on discrete and continuous HP spaces. HPOD outperforms a wide range of diverse baselines with 37% improvement on average over the minimal loss HPs of RAE, and 58% and 66% improvement on average over the default HPs of LOF and iForest.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Graph autoencoder-based unsupervised outlier detection
    Du, Xusheng
    Yu, Jiong
    Chu, Zheng
    Jin, Lina
    Chen, Jiaying
    INFORMATION SCIENCES, 2022, 608 : 532 - 550
  • [22] Unsupervised Outlier Detection Using Memory and Contrastive Learning
    Huyan, Ning
    Quan, Dou
    Zhang, Xiangrong
    Liang, Xuefeng
    Chanussot, Jocelyn
    Jiao, Licheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 6440 - 6454
  • [23] An outlier ensemble for unsupervised anomaly detection in honeypots data
    Boukela, Lynda
    Zhang, Gongxuan
    Bouzefrane, Samia
    Zhou, Junlong
    INTELLIGENT DATA ANALYSIS, 2020, 24 (04) : 743 - 758
  • [24] Unsupervised Outlier Detection via Transformation Invariant Autoencoder
    Cheng, Zhen
    Zhu, En
    Wang, Siqi
    Zhang, Pei
    Li, Wang
    IEEE ACCESS, 2021, 9 : 43991 - 44002
  • [25] Benchmarking Unsupervised Outlier Detection with Realistic Synthetic Data
    Steinbuss, Georg
    Boehm, Klemens
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (04)
  • [26] Unsupervised Outlier Detection Mechanism for Tea Traceability Data
    Yang, Honggang
    Li, Shaowen
    Tu, Lijing
    Ma, Rongrong
    Chen, Yin
    IEEE ACCESS, 2022, 10 : 94818 - 94831
  • [27] UNSUPERVISED ANOMALY DETECTION FOR TIME SERIES WITH OUTLIER EXPOSURE
    Feng, Jiaming
    Huang, Zheng
    Guo, Jie
    Qiu, Weidong
    33RD INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2021), 2020, : 1 - 12
  • [28] Unsupervised Outlier Detection in IOT Using Deep VAE
    Gouda, Walaa
    Tahir, Sidra
    Alanazi, Saad
    Almufareh, Maram
    Alwakid, Ghadah
    SENSORS, 2022, 22 (17)
  • [29] Similarity-Based Unsupervised Evaluation of Outlier Detection
    Marques, Henrique O.
    Zimek, Arthur
    Campello, Ricardo J. G. B.
    Sander, Jorg
    SIMILARITY SEARCH AND APPLICATIONS (SISAP 2022), 2022, 13590 : 234 - 248
  • [30] Generative Adversarial Active Learning for Unsupervised Outlier Detection
    Liu, Yezheng
    Li, Zhe
    Zhou, Chong
    Jiang, Yuanchun
    Sun, Jianshan
    Wang, Meng
    He, Xiangnan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (08) : 1517 - 1528