HPOD: Hyperparameter Optimization for Unsupervised Outlier Detection

被引:0
|
作者
Zhao, Yue [1 ]
Akoglu, Leman [2 ]
机构
[1] Univ Southern Calif, Los Angeles, CA 90007 USA
[2] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Given an unsupervised outlier detection (OD) algorithm, how can we optimize its hyperparameter(s) (HP) on a new dataset, without using any labels? In this work, we address this challenging hyperparameter optimization for unsupervised OD problem, and propose the first continuous HP search method called HPOD. It capitalizes on the prior performance of a large collection of HPs on existing OD benchmark datasets, and transfers this information to enable HP evaluation on a new dataset without labels. Also, HPOD adapts a prominent, (originally) supervised, sampling paradigm to efficiently identify promising HPs in iterations. Extensive experiments show that HPOD works for both deep (e.g., Robust AutoEncoder (RAE)) and shallow (e.g., Local Outlier Factor (LOF) and Isolation Forest (iForest)) algorithms on discrete and continuous HP spaces. HPOD outperforms a wide range of diverse baselines with 37% improvement on average over the minimal loss HPs of RAE, and 58% and 66% improvement on average over the default HPs of LOF and iForest.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] RDPOD: an unsupervised approach for outlier detection
    Abhaya Abhaya
    Bidyut Kr. Patra
    Neural Computing and Applications, 2022, 34 : 1065 - 1077
  • [2] Unsupervised outlier detection in multidimensional data
    Atiq ur Rehman
    Samir Brahim Belhaouari
    Journal of Big Data, 8
  • [3] A new unsupervised outlier detection method
    Zheng, Lina
    Chen, Lijun
    Wang, Yini
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1713 - 1734
  • [4] Internal Evaluation of Unsupervised Outlier Detection
    Marques, Henrique O.
    Campello, Ricardo J. G. B.
    Sander, Jorg
    Zimek, Arthur
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2020, 14 (04)
  • [5] On the Internal Evaluation of Unsupervised Outlier Detection
    Marques, Henrique O.
    Campello, Ricardo J. G. B.
    Zimek, Arthur
    Sander, Jorg
    PROCEEDINGS OF THE 27TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT, 2015,
  • [6] RDPOD: an unsupervised approach for outlier detection
    Abhaya, Abhaya
    Patra, Bidyut Kr
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (02): : 1065 - 1077
  • [7] Unsupervised outlier detection in multidimensional data
    Ur Rehman, Atiq
    Belhaouari, Samir Brahim
    JOURNAL OF BIG DATA, 2021, 8 (01)
  • [8] Bagged Subspaces for Unsupervised Outlier Detection
    Pasillas-Diaz, Jose Ramon
    Ratte, Sylvie
    COMPUTATIONAL INTELLIGENCE, 2017, 33 (03) : 507 - 523
  • [9] Enhancing unsupervised anomaly-based cyberattacks detection in smart homes through hyperparameter optimization
    Iturbe-Araya, Juan Ignacio
    Rifa-Pous, Helena
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2025, 24 (01)
  • [10] Multivariate functional outlier detection using the fast massive unsupervised outlier detection indices
    Ojo, Oluwasegun Taiwo
    Anta, Antonio Fernandez
    Genton, Marc G.
    Lillo, Rosa E.
    STAT, 2023, 12 (01):