Adaptive Gaussian Markov random fields for child mortality estimation

被引:0
|
作者
Aleshin-Guendel, Serge [1 ]
Wakefield, Jon [2 ,3 ]
机构
[1] US Census Bur, Ctr Stat Res & Methodol, 4600 Silver Hill Rd, Washington, DC 20233 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
child mortality; Gaussian Markov random fields; spatio-temporal smoothing; under-5 mortality rate; BAYESIAN-INFERENCE; MODELS; MULTISCALE; HORSESHOE;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985 to 2019, a time period which includes the Rwandan civil war and genocide.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Estimation of parameters of homogeneous gaussian random fields
    Kozachenko Yu.V.
    Kurchenko O.O.
    Ukrainian Mathematical Journal, 2000, 52 (8) : 1239 - 1246
  • [42] BAYESIAN ESTIMATION OF GAUSSIAN CONDITIONAL RANDOM FIELDS
    Gan, Lingrui
    Narisetty, Naveen
    Liang, Feng
    STATISTICA SINICA, 2022, 32 (01) : 131 - 152
  • [43] PARAMETER-ESTIMATION FOR MARKOV GAUSSIAN SERIES OF RANDOM VALUES WITH THE AID OF ADAPTIVE WHITENING FILTER
    LIKHAREV, VA
    MOSUNOV, VB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1981, 24 (08): : 79 - 80
  • [44] Spatial Sensor Selection via Gaussian Markov Random Fields
    Nguyen, Linh V.
    Kodagoda, Sarath
    Ranasinghe, Ravindra
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2016, 46 (09): : 1226 - 1239
  • [45] Segmentation of Rumex obtusifolius using Gaussian Markov random fields
    Hiremath, Santosh
    Tolpekin, Valentyn A.
    van der Heijden, Gerie
    Stein, Alfred
    MACHINE VISION AND APPLICATIONS, 2013, 24 (04) : 845 - 854
  • [46] Sampling Strategies for Fast Updating of Gaussian Markov Random Fields
    Brown, D. Andrew
    McMahan, Christopher S.
    Self, Stella Watson
    AMERICAN STATISTICIAN, 2021, 75 (01): : 52 - 65
  • [47] Some recent work on multivariate Gaussian Markov random fields
    MacNab, Ying C.
    TEST, 2018, 27 (03) : 497 - 541
  • [48] Parallel exact sampling and evaluation of Gaussian Markov random fields
    Steinsland, Ingelin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (06) : 2969 - 2981
  • [49] Revisiting Gaussian Markov random fields and Bayesian disease mapping
    MacNab, Ying C.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2023, 32 (01) : 207 - 225
  • [50] CLASSIFICATION OF TEXTURES USING GAUSSIAN MARKOV RANDOM-FIELDS
    CHELLAPPA, R
    CHATTERJEE, S
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (04): : 959 - 963