Adaptive Gaussian Markov random fields for child mortality estimation

被引:0
|
作者
Aleshin-Guendel, Serge [1 ]
Wakefield, Jon [2 ,3 ]
机构
[1] US Census Bur, Ctr Stat Res & Methodol, 4600 Silver Hill Rd, Washington, DC 20233 USA
[2] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[3] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
child mortality; Gaussian Markov random fields; spatio-temporal smoothing; under-5 mortality rate; BAYESIAN-INFERENCE; MODELS; MULTISCALE; HORSESHOE;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The under-5 mortality rate (U5MR), a critical health indicator, is typically estimated from household surveys in lower and middle income countries. Spatio-temporal disaggregation of household survey data can lead to highly variable estimates of U5MR, necessitating the usage of smoothing models which borrow information across space and time. The assumptions of common smoothing models may be unrealistic when certain time periods or regions are expected to have shocks in mortality relative to their neighbors, which can lead to oversmoothing of U5MR estimates. In this paper, we develop a spatial and temporal smoothing approach based on Gaussian Markov random field models which incorporate knowledge of these expected shocks in mortality. We demonstrate the potential for these models to improve upon alternatives not incorporating knowledge of expected shocks in a simulation study. We apply these models to estimate U5MR in Rwanda at the national level from 1985 to 2019, a time period which includes the Rwandan civil war and genocide.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Region selection in Markov random fields: Gaussian case
    Soloveychik, Ilya
    Tarokh, Vahid
    JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 196
  • [32] Bayesian reference analysis for Gaussian Markov random fields
    Ferreira, Marco A. R.
    De Oliveira, Victor
    JOURNAL OF MULTIVARIATE ANALYSIS, 2007, 98 (04) : 789 - 812
  • [33] Another look at conditionally Gaussian Markov random fields
    Lavine, M
    BAYESIAN STATISTICS 6, 1999, : 371 - 387
  • [34] ADAPTIVE ESTIMATION OF STATIONARY GAUSSIAN FIELDS
    Verzelen, Nicolas
    ANNALS OF STATISTICS, 2010, 38 (03): : 1363 - 1402
  • [35] Adjusted maximum likelihood and pseudo-likelihood estimation for noisy Gaussian Markov random fields
    Dryden, I
    Ippoliti, L
    Romagnoli, L
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2002, 11 (02) : 370 - 388
  • [36] Fast estimation of spatially dependent temporal vegetation trends using Gaussian Markov random fields
    Bolin, David
    Lindstroem, Johan
    Eklundh, Lars
    Lindgren, Finn
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (08) : 2885 - 2896
  • [37] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    L. Fontanella
    L. Ippoliti
    R. J. Martin
    S. Trivisonno
    Advances in Data Analysis and Classification, 2008, 2 (1)
  • [38] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [39] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (01) : 63 - 79
  • [40] Estimation of structural reliability for Gaussian random fields
    Choi, Seung-Kyum
    Canfield, Robert A.
    Grandhi, Ramana V.
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2006, 2 (3-4) : 161 - 173