The Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger equation in Sobolev spaces

被引:0
|
作者
Mun, HakBom [1 ]
An, JinMyong [1 ]
Kim, JinMyong [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Fractional nonlinear Schro<spacing diaeresis>dinger equation; Cauchy problem; local well-posedness; global well-posedness; Strichartz estimates; SCHRODINGER-EQUATIONS; WELL-POSEDNESS; REGULARITY;
D O I
10.36045/j.bbms.230426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger (fNLS) equation. First, we establish the local well-posedness in the fractional Sobolev spaces H gamma with gamma >= 0 for the fNLS equation under less regularity assumptions for the nonlinear term than previous work. Based on the local well-posedness result, we then prove that the fNLS equation is globally wellposed in H gamma with gamma >= 0 if 4 sigma/d <= nu <= nu c(gamma) and the initial data is sufficiently small.
引用
收藏
页码:278 / 293
页数:16
相关论文
共 50 条