The Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger equation in Sobolev spaces

被引:0
|
作者
Mun, HakBom [1 ]
An, JinMyong [1 ]
Kim, JinMyong [1 ]
机构
[1] Kim Il Sung Univ, Fac Math, Pyongyang, North Korea
关键词
Fractional nonlinear Schro<spacing diaeresis>dinger equation; Cauchy problem; local well-posedness; global well-posedness; Strichartz estimates; SCHRODINGER-EQUATIONS; WELL-POSEDNESS; REGULARITY;
D O I
10.36045/j.bbms.230426
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the Cauchy problem for the fractional nonlinear Schro<spacing diaeresis>dinger (fNLS) equation. First, we establish the local well-posedness in the fractional Sobolev spaces H gamma with gamma >= 0 for the fNLS equation under less regularity assumptions for the nonlinear term than previous work. Based on the local well-posedness result, we then prove that the fNLS equation is globally wellposed in H gamma with gamma >= 0 if 4 sigma/d <= nu <= nu c(gamma) and the initial data is sufficiently small.
引用
收藏
页码:278 / 293
页数:16
相关论文
共 50 条
  • [21] Bi-stable vortex solitons in the nonlinear fractional Schro<spacing diaeresis>dinger equation with Bessel optical lattices
    Yan, Lifen
    Wang, Mingfeng
    Zhu, Haiyong
    OPTICS COMMUNICATIONS, 2024, 555
  • [22] A local differential quadrature method for the generalized nonlinear Schro<spacing diaeresis>dinger (GNLS) equation
    Panmei, Meirikim
    Thoudam, Roshan
    INTERNATIONAL JOURNAL OF OPTIMIZATION AND CONTROL-THEORIES & APPLICATIONS-IJOCTA, 2024, 14 (03): : 394 - 403
  • [23] FRACTIONAL SCHRO<spacing diaeresis>DINGER EQUATION INVOLVING A NONLINEARITY DEPENDENT ON A LOWER-ORDER FRACTIONAL TERM
    Dong, Xu
    Wei, Yuanhong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2024,
  • [24] Fractional view evaluation system of Schro spacing diaeresis dinger-KdV equation by a comparative analysis
    Shah, Rasool
    Hyder, Abd-Allah
    Iqbal, Naveed
    Botmart, Thongchai
    AIMS MATHEMATICS, 2022, 7 (11): : 19846 - 19864
  • [25] INVARIANT TORI FOR THE DERIVATIVE NONLINEAR SCHRO spacing diaeresis DINGER EQUATION WITH NONLINEAR TERM DEPENDING ON SPATIAL VARIABLE
    Lou, Zhaowei
    Si, Jianguo
    Wang, Shimin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4555 - 4595
  • [26] Time-Space Adaptive Finite Element Method for Nonlinear Schro<spacing diaeresis>dinger Equation
    Chen, Yaoyao
    Liu, Ying
    Wang, Hao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2025, 17 (01) : 207 - 223
  • [27] Wronskian-type determinant solutions of the nonlocal derivative nonlinear Schro<spacing diaeresis>dinger equation
    Meng, Dexin
    AIMS MATHEMATICS, 2025, 10 (02): : 2652 - 2667
  • [28] Generalized Solutions for Conformable Schro<spacing diaeresis>dinger Equation with Singular Potentials
    Benmerrous, Abdelmjid
    Chadli, Lalla Saadia
    Moujahid, Abdelaziz
    Elomari, M'hamed
    Melliani, Said
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2025, 13 (02): : 373 - 383
  • [29] DOUBLE CASORATIAN SOLUTIONS OF NONLINEAR SCHRO spacing diaeresis DINGER EQUATION WITH PT-SYMMETRIC POTENTIALS
    Qiao, Xiaoyan
    Liu, Wei
    ROMANIAN JOURNAL OF PHYSICS, 2022, 67 (7-8):
  • [30] Point Canonical Transformation And The Time Independent Fractional Schro spacing diaeresis dinger Equation With Position Dependent Mass
    Ghosh, Uttam
    Das, Tapas
    Sarkar, Susmita
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 687 - 704